
Pattern Recognition 46 (2013) 551–565
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

Rabelais

E-m

ramel@

tours.fr
journal homepage: www.elsevier.com/locate/pr
Fuzzy multilevel graph embedding
Muhammad Muzzamil Luqman a,b,n, Jean-Yves Ramel a, Josep Lladós b, Thierry Brouard a

a Laboratoire d’Informatique, Université Franc-ois Rabelais de Tours, 37200, France
b Computer Vision Center, Universitat Auton �oma de Barcelona, 08193, Spain
a r t i c l e i n f o

Article history:

Received 9 December 2011

Received in revised form

10 July 2012

Accepted 31 July 2012
Available online 10 August 2012

Keywords:

Pattern recognition

Graphics recognition

Graph clustering

Graph classification

Explicit graph embedding

Fuzzy logic
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.07.029

esponding author at: Laboratoire d’Inform

de Tours, 37200, France. Tel.: þ33 2473614

ail addresses: mluqman@cvc.uab.es, luqman@

univ-tours.fr (J.-Y. Ramel), josep@cvc.uab.es (

(T. Brouard).
a b s t r a c t

Structural pattern recognition approaches offer the most expressive, convenient, powerful but

computational expensive representations of underlying relational information. To benefit from mature,

less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition

they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding

bridges the gap between structural and statistical pattern recognition. We extract the topological,

structural and attribute information from a graph and encode numeric details by fuzzy histograms and

symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and

straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation

on standard public graph datasets shows that our method outperforms the state-of-the-art methods of

graph embedding for richly attributed graphs.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Pattern recognition has emerged as an important research
domain and has supported the development of numerous appli-
cations in many different areas of activity. For a general introduc-
tion to former we refer the interested reader to [1,2]. The methods
for pattern recognition are broadly categorized as statistical,
structural or syntactic approaches [3]. In this paper we address
the problem of lack of computational tools for structural pattern
recognition and propose to exploit the computational efficiency of
statistical pattern recognition. This permits a pattern recognition
application to benefit from representational power of structural
methods and computational efficiency of statistical methods,
while avoiding the limitations of both. The next two paragraphs
briefly introduce the main advantages and limitations of struc-
tural and statistical pattern recognition.

Structural pattern recognition is characterized by the use of
symbolic data structures i.e. graphs, strings and trees. Graphs are
widely used in structural pattern recognition and can safely be
termed as representative of symbolic data structures (strings and
trees are special instances of graphs [4]). Graphs provide a
convenient and powerful representation of relational information.
They are able to represent not only the values of both symbolic
ll rights reserved.

atique, Université Franc-ois

43; fax: þ33 247361422.

univ-tours.fr (M.M. Luqman),

J. Lladós), brouard@univ-
and numeric properties of an object, but can also explicitly model
the spatial, temporal and conceptual relations that exist between
its parts. Moreover, graphs do not suffer from the constraint of
fixed dimensionality. For example, the number of nodes and
edges in a graph is not limited a priori and depends on the size
and the complexity of the actual object to be modeled [5]. And
above all, graphs have foundations in strong mathematical
formulation and have a mature theory at their basis. However
two serious drawbacks of graph based representations are that
these representations are sensitive to noise and that the algo-
rithmic tools for performing different operations on them are
computational expensive. For instance the much needed opera-
tions of graph matching and graph isomorphism are NP-complete.
For further reading on structural pattern recognition we refer the
interested reader to [4–8].

Statistical pattern recognition is characterized by the use of
numeric feature vectors. A very important advantage of these
representations is that because of their simple structure, the basic
operations that are used in machine learning can easily be executed
on them. This makes a large number of mature algorithms for pattern
analysis and classification immediately available to statistical pattern
recognition. And, as a result of this fact, the statistical pattern
recognition offers state-of-the art computational efficient tools of
learning, classification and clustering. However, feature vector based
representations have associated representational limitations, which
arise from their simple structure and the fact that they have same
length and structure regardless of the complexity of object to be
modeled [9]. For further reading on statistical pattern recognition and
classification we refer the interested reader to [10].

www.elsevier.com/locate/pr
www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2012.07.029
dx.doi.org/10.1016/j.patcog.2012.07.029
dx.doi.org/10.1016/j.patcog.2012.07.029
mailto:mluqman@cvc.uab.es
mailto:luqman@univ-tours.fr
mailto:ramel@univ-tours.fr
mailto:josep@cvc.uab.es
mailto:brouard@univ-tours.fr
mailto:brouard@univ-tours.fr
dx.doi.org/10.1016/j.patcog.2012.07.029


M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565552
1.1. Graph embedding

Graph embedding is a natural outcome of parallel advancements
in structural and statistical pattern recognition. Over decades, the
pattern recognition research community has developed a range of
expressive and powerful approaches for diverse problem domains.
Graph based structural representations are usually employed for
extracting the structure, topology and geometry in addition to the
statistical details of underlying data. These representations could not
be exploited to their full strength during the next step in processing
chain, because of limited availability of computational tools. On the
other hand,the efficient and mature computational models offered by
statistical approaches work only on vector data and cannot be directly
applied to high-dimensional structural representations. Graph
embedding acts as a bridge between structural and statistical
approaches [3,6,11], and allows a pattern recognition method to
benefit from computational efficiency of state-of-the-art statistical
models and tools [12] along-with the convenience and representa-
tional power of classical symbolic representations [7]. This makes it
possible to address the problems of learning, classification and
clustering for graphs, which are among the most basic tasks in
pattern recognition [13]. Graph embedding has its application to
the whole variety of domains which are entertained by pattern
recognition and where the use of a relational data structure is
mandatory for performing high level tasks. Graph embedding meth-
ods are also employed to solve the computationally hard problems
geometrically [14]. For further reading on graph embedding we refer
the interested reader to [15,16].

The graph embedding methods are formally categorized as
implicit graph embedding or explicit graph embedding. The
implicit graph embedding methods are based on graph kernels.
A graph kernel is a function that can be thought of as a dot
product in some implicitly existing vector space. Instead of
mapping graphs from graph space to vector space and then
computing their dot product, the value of the kernel function is
evaluated in graph space. Since it does not explicitly map a graph
to a point in vector space, a strict limitation of implicit graph
embedding is that it does not permit all the operations that could
be defined on vector spaces. For further reading on graph kernels
and implicit graph embedding we refer the interested reader to
[16,17]. The more useful, explicit graph embedding methods
explicitly embed an input graph into a feature vector and enable
the use of all the methodologies and techniques devised for vector
spaces. The vectors obtained by an explicit graph embedding
method can also be employed in a standard dot product for
defining an implicit graph embedding function between two
graphs [4]. An interesting property of explicit graph embedding
is that it embeds graphs in pattern spaces in a manner that similar
structures come close to each other and different structures go far
away i.e. an implicit clustering is achieved [18]. Another impor-
tant property of explicit graph embedding is that the graphs of
different size and order are embedded into a fixed size feature
vector. This means that for constructing the feature vector, an
important step is to mark the important details that are available
in all the graphs and are applicable to a broad range of graph
types. For further reading on explicit graph embedding we refer
the interested reader to [16].

Graph embedding is an interesting approximate solution for
addressing the problem of in-exact graph matching, which belongs
to the class of NP-complete problems. By mapping a high dimensional
graph into a point in suitable vector space, graph embedding permits
to perform the basic mathematical computations which are required
by various statistical pattern recognition techniques, and offers
interesting solutions to the problems of graph clustering and classi-
fication. However, in our opinion because of the strict limitation of
the resulting feature vector of not being capable of preserving the
matching between nodes of graphs, graph embedding always lacks
the capabilities to address the problem of graph isomorphism (i.e.
exact graph matching).

1.2. Proposed method

In this paper we present an unsupervised method for explicit
embedding of directed and undirected attributed graphs with many
numeric as well as symbolic attributes on both nodes and edges
(which represent a very general super class of graphs), into feature
vectors. The method is equally applicable to strings and trees as well.
We employ fuzzy logic for addressing the noise sensitivity of graph
based representations whilst achieving a simple and straightforward
embedding of topological, structural and attribute information of a
graph into a low-dimensional numeric feature vector. The method
has been named as Fuzzy Multilevel Graph Embedding and abbre-
viated as FMGE. It embeds an attributed graph into a feature vector by
extracting graph level details, subgraph homogeneity details and
elementary level details. The feature vector is constructed by employ-
ing a direct encoding of graph level details followed by encoding
of the distribution of subgraph homogeneity and elementary
level details of the graph. The latter is achieved by constructing
fuzzy histograms for numeric information and crisp histograms for
symbolic information. The parameters for these histograms are
learned during a prior unsupervised learning phase which does not
necessarily require any labeled learning set. The work presented in
this paper is an evolved version of our previous work [19]. Apart from
formalizing our previously proposed graph embedding method to be
generally applicable to a wide range of graph representations and the
theoretical contributions of our work highlighted in next section, the
experimentation has been enlarged by testing on more graph
databases and the method is applied to the real problem of graph
retrieval and subgraph spotting.

In Section 2 we outline related works on graph embedding.
Section 3 presents definitions and formalizes the notation used in
this paper. Section 4 introduces an overall global description of
FMGE. In Section 5 we present details on the unsupervised
learning phase and graph embedding phase of FMGE. Experi-
mental results are presented in Section 6 and are followed by a
discussion on the parameters of FMGE in Section 7. The paper
concludes by presenting future directions of work in Section 8.
2. Related works

In the literature the problem of graph embedding has been
approached by three important families of algorithms. Recent
surveys on graph embedding are presented in [4,15,16]. Among
these, a first family of graph embedding methods is based on the
frequencies of appearance of specific knowledge-dependent sub-
structures in graph. These works are mostly proposed for chemi-
cal compounds and molecular structures. Graph representation of
molecules are assigned feature vectors whose components are the
frequencies of appearance of specific knowledge-dependent sub-
structures in graphs. Interesting works in this family of methods
include [20–22]. The methods in this family of graph embedding
algorithms are based on finding subgraphs in graph and are
capable of exploiting domain knowledge for graph embedding.
However, they have the drawback that finding substructures in
graphs is computationally challenging.

A second family of graph embedding algorithms is spectral
based embedding. Spectral based embedding is a very prominent
class of graph embedding methods and is proposed by lots of
works in literature. In order to embed graphs into feature vectors,
this family of methods extract features from graphs by eigen-
decomposition of adjacency and Laplacian matrices and then



M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 553
apply a dimensionality reduction technique on the eigen-features.
Luo et al. in [23] have proposed very interesting work for graph
embedding based on eigen-decomposition of adjacency matrix.
Another interesting work in this family of algorithms is by Wilson
et al. [18]. They employ the spectral matrix of Laplacian of a graph to
construct symmetric polynomials whose coefficients are used as
graph features. Bai et al. in [24] have used multidimensional scaling
characterized by the matrix of the geodesic distances between nodes
into a manifold, Torsello et al. in [25] have used the computation of
minimum common super-tree and Emms et al. in [26] have
employed the encoding of commute time for random walks for graph
embedding. The work of Chen et al. [27] on local discriminant
embedding and Shaw et al. [14] on structure preserving embedding
also propose interesting spectral based embedding methods. Malik
et al. in [28] have employed the spectral graph theory for proposing
graph embedding methods based on graph cuts. Recently Ren et al. in
[29] have proposed an interesting method of spectral based embed-
ding, where they have used the polynomial coefficients of Ihara Zeta
function for describing structure and topology of a graph. The spectral
family of graph embedding methods is very interesting and provide
solid theoretical insight into the meaning and significance of
extracted features but a very serious drawback of these methods is
that they remain restricted to unattributed graphs. They are also very
sensitive to structural errors in graphs i.e. missing nodes and edges.

Finally a third family of graph embedding algorithms is based
on dissimilarity of a graph from a set of prototypes. The dissim-
ilarity based graph embedding can handle arbitrary graphs. The
dissimilarity based graph embedding methods usually use graph
edit distance and exploits domain knowledge. But since graph
edit distance is computationally expensive, the dissimilarity
based graph embedding methods may become computationally
challenging. The work of Riesen and Bunke [4,5] is a very
interesting contribution to the existing literature on graph
embedding. Their method is applicable to both directed and
undirected graphs. It is based on prototype selection for mapping
graphs to dissimilarity spaces. The key idea of their approach is to
use the distances of an input graph AG to a number of training
graphs, termed prototype graphs, as a vectorial description of AG.
This method assumes that a dissimilarity function between two
graphs has been defined and proposes to use an approximation of
graph edit distance, although the method can work with other
dissimilarity measures. Given a set of graphs, the method starts
by choosing n prototypes that will be used as references for
constructing the vectors. The choice of prototype graphs and also
their number n, is a critical issue. The method attempts to select
the prototypes that best possibly reflect the distribution of the set
of graphs. The method showed improvement over traditional
graph edit distance based nearest neighbor classifier approach
and also allowed the use of sophisticated classifiers which is not
possible in original graph space, but we argue that graph edit
distance is computationally expensive. As this method has been
proposed for pattern recognition, instead of employing graph edit
distance as a dissimilarity measure for constructing vectors and
then employing a classifier, graph edit distance could have
directly been computed between a graph AG and each of the
prototype graphs for arriving at a decision.

2.1. Our contribution

Most of the existing works on graph embedding deal only the
graphs which are comprised of edges with a single attribute and
vertices with either no or only symbolic attributes. These methods are
only useful for specific application domains for which they are
designed. FMGE does not require any dissimilarity measure between
graphs and to the best of our knowledge, FMGE extends the methods
in literature by offering the embedding of attributed graphs with
many numeric as well as symbolic attributes on both nodes and
edges. It is applicable to directed as well as undirected attributed
graphs. Many existing solutions for graph embedding offer to utilize
the statistical significant details in graphs for embedding them into
feature vectors. FMGE exploits the topological, structural and attri-
bute information of the graphs along-with the statistical significant
information, for constructing feature vectors of adapted and optimal
size. It employs fuzzy overlapping trapezoidal intervals for minimiz-
ing the information loss while mapping from continuous graph space
to discrete feature vector space. The proposed feature vector is very
significant for application domains where the use of graphs is
mandatory for representing rich structural and topological informa-
tion, and an approximate but computational efficient solution is
needed. The unsupervised learning abilities of FMGE and the fact that
it does not require a labeled graph dataset for learning allows its
inexpensive deployment to various application domains.

The extraction of subgraph homogeneity for embedding topo-
logical and structural level details and multilevel distribution
analysis of graph are the novelty of our work. First of the two
important theoretical contributions of this work (w.r.t. our pre-
vious work [19]) is unsupervised learning algorithm for con-
structing fuzzy histograms. This is inspired from a work on
deriving fuzzy intervals from crisp intervals [30] and this
addresses the problem of noise sensitivity of graphs. The second
important contribution which is a novelty to graph embedding
methods, is the embedding of information about homogeneity of
subgraphs in a graph.
3. Definitions and notations
Definition 1 (Attributed graph (AG)). Let AV and AE denote the
domains of possible values for attributed vertices and edges
respectively. These domains are assumed to include a special
value that represents a null value of a vertex or an edge. In this
paper the term attributed graph is used to refer to an undirected
attributed graph, unless explicitly specified. An attributed graph
AG over (AV, AE) is defined to be a four-tuple:

AG¼ ðV ,E,mV ,mEÞ

where

V is a set of vertices, EDV � V is a set of edges,
mV : V�!Ak

V is function assigning k attributes to vertices and
mE : E�!Al

E is a function assigning l attributes to edges.

Definition 2 (Graph order). The order of a graph AG¼ ðV ,E,mV ,mEÞ

is given by 9V9 i.e. the number of vertices in AG.
Let AG1 and AG2 be two attributed graphs, then:

AG1 is smaller than AG2 iff 9V19o9V29

AG1 and AG2 are equal ordered iff 9V19¼ 9V29

AG1 is bigger than AG2 iff 9V1949V29
Definition 3 (Graph size). The size of a graph AG¼ ðV ,E,mV ,mEÞ

is given by 9E9 i.e. the number of edges in AG.
Let AG1 and AG2 be two attributed graphs, then:

AG1 is thinner than AG2 iff 9E19o9E29

AG1 and AG2 are equal sized iff 9E19¼ 9E29

AG1 is thicker than AG2 iff 9E1949E29
Definition 4 (Node degree). The degree of a vertex (or node) Vi in
graph AG¼ ðV ,E,mV ,mEÞ refers to the number of edges connected to
Vi. If AG is a directed graph then each of its nodes has an in-degree



M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565554
and an out-degree associated to it. The in-degree refers to the
number of incoming edges and out-degree refers to the number of
outgoing edges for a node. Generally, the terms densely connected

graph and sparsely connected graph are used for abstractly cate-
gorizing a graph on the basis of its node degrees.

Definition 5 (Graph embedding). Graph embedding is a metho-
dology aimed at representing a whole graph, along with the
attributes attached to its nodes and edges, as a point in a suitable
vector space.

Definition 6 (Explicit graph embedding). Explicit graph embed-
ding maps a graph to a point in suitable vector space. It encodes
the graphs by equal size vectors and produces one vector per
graph. Mathematically, for a given graph AG¼ ðV ,E,mV ,mEÞ, explicit
graph embedding is a function f, which maps graph AG from
graph space G to a point ðf 1,f 2, . . . ,f nÞ in n dimensional vector
space Rn. It is given as

f : G-Rn

AG/fðAGÞ ¼ ðf 1,f 2, . . . ,f nÞ

4. Overview of fuzzy multilevel graph embedding (FMGE)

A block diagram of FMGE is presented in Fig. 1. It accepts a
collection of m attributed graphs as input and encodes their
topological, structural and attribute details into m equal size
feature vectors. The feature vector of FMGE is named as Fuzzy

Structural Multilevel Feature Vector and abbreviated as FSMFV.

4.1. Input of FMGE

As input FMGE accepts a collection of m attributed graphs
fAG1,AG2, . . . ,AGe, . . . ,AGmg, where the eth graph is denoted by
AGe ¼ ðVe,Ee,mVe ,mEe Þ.

4.2. Output of FMGE

As output FMGE produces a collection of m same size feature
vectors, given by fFSMFV1,FSMFV2, . . . ,FSMFVe, . . . ,FSMFVmg. The
eth input graph AGe is embedded into feature vector FSMFVe:
AGe/fðAGeÞ ¼ FSMFVe. Where FSMFVe is a point in n dimensional
vector space Rn : FSMFVe ¼ ðf e1

,f e2
, . . . ,f en

Þ.

4.3. Description of feature vector of FMGE

Fuzzy Structural Multilevel Feature Vector (FSMFV) contains
features extracted from three levels of information in graph:
(i) graph level information i.e. graph order and graph size,
(ii) the structural level information extracted from node degrees
Fig. 1. Overview of Fuzzy Multilev

Fig. 2. The Fuzzy Structural Multi
and subgraph homogeneity and (iii) the elementary level informa-
tion extracted from node and edge attributes. FSMFV is a vector in
n dimensional vector space Rn, given as FSMFV ¼ ðf 1,f 2, . . . ,f nÞ. The
overall structure of FSMFV is presented in Fig. 2.

4.3.1. Embedding of graph level information

The graph level information in FSMFV is embedded by two
numeric features, encoding the order and the size of graph.

Graph order: A graph vertex is an abstract representation of the
primitive components of underlying content. The order of a graph
provides very important discriminatory topological information
on the graph. Graph order (9V9) allows to discriminate between a
small graph in Fig. 4(a) and bigger graphs in Fig. 4(b) and (c)
(9V9¼ 3 vs 9V9¼ 4). At the same time it permits to define a
similarity between two equal ordered graphs in Fig. 4(b) and (c)
(9V9¼ 4).

Graph size: An edge is an abstract representation of the
relationship between the primitive components of underlying
content. Graph size also provides important discriminatory infor-
mation on the topological details of graph. Two equal ordered
graphs in Fig. 4(b) and (c) are differentiated by graph size (9E9) i.e.
a thin graph in Fig. 4(b) is differentiated from a thicker graph in
Fig. 4(c) (9E9¼ 3 vs 9E9¼ 4). At the same time it permits to define a
similarity between two equal sized graphs in Fig. 4(a) and (b)
(9E9¼ 3).

4.3.2. Embedding of structural level information

The embedding of structural level information is a novelty and
the most critical part of FMGE. No existing work on graph
embedding clearly uses this information. We use node degrees
information and subgraph homogeneity measure embedded by
histograms of node attributes resemblance and edge attributes
resemblance, for embedding structural level information. Fig. 3
outlines this part of FSMFV.

Node degrees: The degrees of nodes represent the distribution
of edges in graph and provide complementary discriminatory
information on the structure and topology of graph. It permits to
discriminate between densely connected graphs and sparsely
connected graphs. Node degrees information is encoded by a
histogram of si fuzzy intervals. The fuzzy intervals are learned
during a prior learning phase, which employs degrees of all the
nodes of all graphs in dataset. Node degrees features (hd in Fig. 3),
for an attributed graph, embeds the histogram of its nodes for the
si fuzzy intervals. In Fig. 3, the histogram hd is a fuzzy histogram
as node degrees is a numeric information. For directed graphs this
feature is represented by two sub-features of in-degree and out-
degree i.e. a fuzzy histogram for encoding the distribution of in-
degrees and an other fuzzy histogram for encoding the distribu-
tion of out-degrees of nodes. The node degree information for the
graphs in Fig. 4(a)–(c) permits to increase the precision of the
el Graph Embedding (FMGE).

level Feature Vector (FSMFV).



Fig. 3. Embedding of structural level information.

Fig. 4. An example for illustration of the extraction of discriminatory information, for basic geometric shapes of unit length, by FSMFV. A vertex in graph is an abstract

representation of a primitive line in underlying content, with an attribute of length L. An edge in graph represents the connectivity relationship between two primitive lines in

underlying content, with their relative length RL and angle Angle between them as the edge attributes. The respective resemblance attributes are shown on the nodes and edges.

The histograms in first row for each graph present the histograms for graph order and graph size (left to right). The center row presents histograms for node degree, node

attributes L, resemblanceRL and resemblanceAngle respectively from left to right. The last row presents the histograms for edge attributes RL, Angle, resemblanceL and

resemblanceNodeDegree respectively from left to right. (a) 9V9¼ 3, 9E9¼ 3, edgeAtt¼ ff1,1,1g,fA,A,Ag,f1,1,1g,f1,1,1gg, nodeDegree¼{2,2,2}, nodeAtt¼{{1,1,1}, {1,1,1}, {0,0,0}} and

FSMFV ¼ 3,3,0,3,0,3,0,0,0,3,0,3,0,3,0,3,0,0,0,3,0,0,3. (b) 9V9¼ 4, 9E9¼ 3, edgeAtt ¼ ff1,1,0:5g,fB,B,Bg,f1,0:5,0:5g,f0:5,1,0:5gg, nodeDegree¼{1,2,2,1}, nodeAtt¼{{1,1,1,0.5},

{n,1,0.5,n}, {n,1,1,n}} and FSMFV ¼ 4,3,2,2,1,3,0,0,1,1,0,2,1,2,0,0,3,0,2,0,0,2,1. (c) 9V9¼ 4, 9E9¼ 4, edgeAtt¼ ff:5; :5; :5; :5g,fB,B,B,Bg,f:5; :5; :5; :5g,f1,1,1,1gg, nodeDegree¼

f2,2,2,2g, nodeAtt¼ ff2,1,2,1g,f1,1,1,1g,f1,1,1,1gg and FSMFV ¼ 4,4,0,4,0,2,2,0,0,4,0,4,4,0,0,0,4,0,4,0,0,0,4.

M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 555
similarity between graphs. For example, the graphs in
Fig. 4(a) and (b) represent two different topologies (9V9¼ 3 and
9V9¼ 4) and a relatively similar geometry (9E9¼ 3). On the other
hand, the graphs in Fig. 4(b) and (c) represent two different
geometries (9E9¼ 3 and 9E9¼ 4) and a quite similar topology
(9V9¼ 4). Furthermore, the graphs in Fig. 4(a) and (c) represent
two different topologies (9V9¼ 3 and 9V9¼ 4) and geometries
(9E9¼ 3 and 9E9¼ 4). By incorporating the node degree informa-
tion, it is very straightforward to conclude that graphs in
Fig. 4(a) and (c) are more similar to each other than the graph
in Fig. 4(a).
Node attributes resemblance for edges: The resemblance
between two primitive components that have a relationship
between them is a supplementary information available in the
graph. The node attributes resemblance for an edge encodes
structural information for the respective node-couple. To com-
pute resemblance information for an edge, the node degrees of its
two nodes and the list of node attributes as given by mV are
employed for extracting additional information. This additional
information is represented as new edge attributes and is pro-
cessed like other edge attributes. Given an edge between two
nodes, say node1 and node2 in a graph, the resemblance between a



M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565556
numeric node attribute a is computed by the following first
equation and the resemblance between a symbolic node attribute
b is computed by the following second equation:

resemblanceða1,a2Þ ¼minð9a19,9a29Þ=maxð9a19,9a29Þ ð1Þ

where
a A {node degree, mV },
a1 is the value of the attribute a for node1 and
a2 is the value of the same attribute a for node2.
resemblanceðb1,b2Þ ¼
1 b1 ¼ b2

0 otherwise

����
���� ð2Þ

where
b A mV ,
b1 is the value of the attribute b for node1 and
b2 is the value of the same attribute b for node2.
For each symbolic node attribute we represent the resemblance
attribute nr by exactly two numeric features. The resemblance for
symbolic attributes can either be 0 or 1 (Eq. (2)). The cardinalities
of the two resemblance values in input graph, are encoded by a
crisp histogram which is used as features in FSMFV. For each
numeric node attribute, the resemblance attribute nr is repre-
sented by snr features in FSMFV. This resemblance information is
encoded by a fuzzy histogram of snr fuzzy intervals. The fuzzy
intervals are learned during a prior learning phase, which
employs resemblance attribute nr of all the edges of all graphs
in dataset. In Fig. 3 the histogram hnr

d represents the features for
encoding resemblance attribute for node degrees. Whereas, the
histograms hnr

1 ,hnr
2 , . . . ,hnr

k represent the features for encoding
resemblance attributes for k node attributes mV . The histogram
hnr

d is a fuzzy histogram since node degree is a numeric informa-
tion. Each of the histograms hnr

1 ,hnr
2 , . . . ,hnr

k , is a crisp histogram if
its corresponding attribute is symbolic and is a fuzzy histogram if
the attribute that it is encoding is a numeric attribute. Node
attributes resemblance for edges of example graphs in Fig. 4
provides more precision for discriminating between the graphs.

Edge attributes resemblance for nodes: The resemblance among
the relationships associated to a primitive component is a
supplementary information available in the graph. The edge
attributes resemblance for a node encodes the structural informa-
tion for the respective edges of node and brings more topological
information to FSMFV. To compute resemblance information for a
node, each attribute of its edges (as given by mE) is employed for
extracting additional information. This additional information is
represented as new node attributes and is processed like other
node attributes. Given a node, say node in a graph, the resem-
blance for the edges connected to node is computed as the mean
of the resemblances between all the pair of edges connected to
node. For a pair of edges, say edge1 and edge2 connected to node,
the resemblance for a numeric attribute c is computed by the
following first equation and the resemblance between a symbolic
edge attribute d is computed by the following second equation:

resemblanceðc1,c2Þ ¼minð9c19,9c29Þ=maxð9c19,9c29Þ ð3Þ

where
Fig. 5. Embedding of elementary level information.
c A mE,
c1 is the value of the attribute c for edge1 and
c2 is the value of the same attribute c for edge2.
resemblanceðd1,d2Þ ¼
1 d1 ¼ d2

0 otherwise

����
���� ð4Þ

where
d A mE,
d1 is the value of the attribute d for edge1 and
d2 is the value of the same attribute d for edge2.
For each symbolic edge attribute, the resulting resemblance
attribute er is treated as a numeric attribute and is embedded by a
fuzzy histogram. The resemblance for symbolic edge attributes is
computed as mean of the resemblances between all the pair of edges
connected to a node. Although the resemblance for a pair of edges is
always either 0 or 1 but mean resemblance for all the pair of edges of
a node can be any numeric value (this is different from the symbolic
node attributes resemblance which is always either 0 or 1). Therefore,
for each symbolic and numeric edge attribute, the resemblance
attribute er is represented by ser features in FSMFV. This resemblance
information is encoded by a fuzzy histogram of ser fuzzy intervals. The
fuzzy intervals are learned during a prior learning phase, which
employs resemblance attribute er of all the nodes of all graphs in
dataset. In Fig. 3 the histograms her

1 ,her
2 , . . . ,her

l represent the features
for encoding resemblance attributes for l edge attributes mE. Each of
the histograms her

1 ,her
2 , . . . ,her

l , is a fuzzy histogram. The edge attri-
butes resemblance for nodes of example graphs in Fig. 4 compliments
the node resemblance attributes for differentiating the graphs.
4.3.3. Embedding of elementary level information

Embedding of elementary level information allows FMGE to
extract discriminatory information from individual nodes and edges
of the graph. The symbolic attributes are encoded by crisp histo-
grams and the numeric attributes by fuzzy histograms. FMGE can
embed attributed graphs with many symbolic and numeric attri-
butes on both nodes and edges. For every symbolic node attribute,
each modality that can be taken by this attribute is represented by
exactly one numeric feature in FSMFV. This feature encodes the
cardinality of this modality in an input graph. Each numeric node
attribute is encoded by a fuzzy histogram of its si fuzzy intervals. The
fuzzy intervals are learned for each of the numeric node attributes in
the input graph dataset during a prior learning phase. The features
for a numeric attribute of an input graph, embeds the histogram for
these si fuzzy intervals. Fig. 5 outlines this part of FSMFV.

Node attributes: The node attributes provide additional details
on primitive components of underlying content and aid FSMFV to
discriminate between two similar structured graphs. In Fig. 5 the
histograms hn

1,hn
2, . . . ,hn

k represent the features for encoding k

node attributes mV . Each of the histograms hn
1,hn

2, . . . ,hn
k , is a crisp

histogram if its corresponding attribute is symbolic and is a fuzzy
histogram if the attribute that it is encoding is a numeric
attribute. The node attributes are very important information
for discriminating between two equal ordered and equal sized
graphs, which are representing quite similar structure as well (e.g.
the graph of a small square can be differentiated from that of a big
square by using a length attribute on the nodes). The length
attribute L of the graph nodes in Fig. 4(c) provides additional
details on the graph and clearly discriminates it from the graph in
Fig. 4(b).



M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 557
Edge attributes: The edge attributes provide supplementary
details on the relationships between the primitive components
of the underlying content and aid FSMFV to discriminate between
two similar structured graphs. In Fig. 5 the histograms he

1,he
2,

. . . ,he
l represent the features for encoding l edge attributes mE.

Each of the histograms he
1,he

2, . . . ,he
l is a crisp histogram if its

corresponding attribute is symbolic and is a fuzzy histogram if the
attribute that it is encoding is a numeric attribute. The edge
attributes are very important information for discriminating
between two equal ordered and equal sized graphs, which are
representing quite similar structure as well (e.g. the graph of a
square can be differentiated from that of a rhombus by using angle
attribute on the edges). The relative length RL and angle A attribute
of the graph edges in Fig. 4(b) provide additional details on the
graph and clearly discriminates it from the graph in Fig. 4(a).
5. Framework of fuzzy multilevel graph embedding (FMGE)

In FMGE framework, the mapping of input collection of graphs to
appropriate points in a suitable vector space Rn is achieved in two
phases i.e. the off-line unsupervised learning phase and the on-line
graph embedding phase. The unsupervised learning phase learns a set
of fuzzy intervals for features linked to distribution analysis of the
input graphs i.e. features for node degree, numeric node and edge
attributes and the corresponding resemblance attributes. We refer
each of them as an attribute i. For symbolic node and edge attributes
and the corresponding resemblance attributes, the unsupervised
learning phase employs the modalities taken by this attribute and
treat them as crisp intervals. The graph embedding phase employs
these intervals for computing different bins of the respective fuzzy or
crisp histograms.

5.1. Unsupervised learning phase

The off-line unsupervised learning phase of FMGE is outlined
in Fig. 6. It learns a set of fuzzy intervals for encoding numeric
information and crisp intervals for encoding symbolic information
in graphs.

5.1.1. Input

The input to unsupervised learning phase of FMGE is the collection
of m attributed graphs, given by fAG1,AG2, . . . ,AGe, . . . ,AGmg. Where
the eth graph is denoted by AGe ¼ ðVe,Ee,mVe ,mEe Þ. A second input to
this phase is for each feature the desired number of fuzzy intervals.
This is referred by si for an attribute i.

5.1.2. Output

As output the unsupervised learning phase of FMGE produces
si fuzzy overlapping trapezoidal intervals for an attribute i in
input graphs (example in Fig. 8).
Fig. 6. The unsupervised le

Fig. 7. Learning fuzzy inter
5.1.3. Description

The main steps for learning of fuzzy intervals for an attribute
i are outlined in Fig. 7. The first step is the computation of crisp
intervals from the list of values of attribute i for all the graphs in
input collection of graphs. This is straightforward and is achieved
by any standard data discretization technique. A survey of
popular discretization techniques is presented by Liu et al. [31].
We propose to use equally spaced bins for obtaining an initial set
of crisp intervals, as they avoid over-fitting and offers FMGE a
better generalization capability to unseen graphs during graph
embedding phase. Algorithm 5.1 outlines the pseudo-code for
computing an initial set of crisp intervals for an attribute i. It uses
a pseudo-call ‘GetEqualSpacBin’ for getting an initial set of equally
spaced bins. This pseudo-call refers to an appropriate data
discretization function (available in underlying implementation
platform). The initial set of equally spaced bins are used to
construct a data structure, which stores the crisp intervals. This
data structure is employed for computing si fuzzy intervals for
attribute i. After computing the initial set of crisp intervals, in
next step, these crisp intervals are arranged in an overlapping
fashion to get fuzzy overlapping intervals. Normally trapezoidal,
triangular and Gaussian arrangements are popular choices for
fuzzy membership functions [30]. We propose to use the trape-
zoidal membership function, which is the generally used fuzzy
membership function. It allows a range of instances to lie under
full membership and assigns partial membership to the boundary
instances. Fig. 8 outlines a trapezoidal interval defined over crisp
intervals. A trapezoidal interval is defined by four points; as is
given by points a,b,c,d in Fig. 8. It is very important to highlight
here that the first fuzzy overlapping trapezoidal interval covers all
values till �1 and the last fuzzy overlapping trapezoidal interval
is limited by1. This makes sure that during the graph embedding
phase every attribute instance falls under the range of fuzzy
overlapping trapezoidal intervals and it further strengthens the
generalization abilities of the method to unseen graphs. A fuzzy
interval defined in trapezoidal fashion assigns a membership
weight of 1 (full membership) between points b and c. The
membership weight gradually approaches 0 as we move from
b to a and from c to d. This trapezoidal behavior allows to assign
full membership, partial membership and no membership to
attribute instances. This is important to highlight here that the
total membership assigned to an instance is always exactly equal
to 1 i.e. either one full membership or two partial memberships
are assigned to each attribute instance.

Algorithm 5.2 outlines the pseudo-code for computing fuzzy
overlapping trapezoidal intervals from an initial set of crisp
intervals for an attribute i in input collection of graphs. It first
computes the initial set of crisp intervals using Algorithm 5.1 and
then arranges them in an overlapping trapezoidal fashion for
obtaining a set of fuzzy overlapping trapezoidal intervals for
attribute i. The number of fuzzy intervals for attribute i depends
upon the number of features desired for attribute i in FSMFV, and
arning phase of FMGE.

vals for an attribute i.



Fig. 8. Five fuzzy overlapping trapezoidal intervals (si) defined over nine equally spaced crisp intervals (ni).

Fig. 9. The graph embedding phase of FMGE.

M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565558
is controlled by parameter si which can either be manually
specified, automatically learned by using an equal frequency
based discretization or empirically learned and optimized on
validation set. The number of crisp intervals ni for desired number
of fuzzy intervals si is computed by Eq. (5). For the sake of
continuity we have used the terms fuzzy intervals, fuzzy over-
lapping intervals and fuzzy overlapping trapezoidal intervals
interchangeably

ni ¼ 2� si�1 ð5Þ

5.2. Graph embedding phase

The graph embedding phase of FMGE is outlined in Fig. 9. It
employs the crisp intervals and fuzzy intervals (from unsuper-
vised learning phase) to compute respective histograms for
embedding an input attributed graph into a feature vector. This
achieves the mapping of the input graph to appropriate points in
a suitable vector space Rn.

5.2.1. Input

The input to graph embedding phase of FMGE is an attributed
graph AGe to be embedded, as given by AGe ¼ ðVe,Ee,mVe ,mEe Þ. A
second input to this phase is the si fuzzy overlapping trapezoidal
intervals for the attribute i (from learning phase).

5.2.2. Output

The graph embedding phase of FMGE produces a feature
vector FSMFVe for input graph AGe. The length of this feature
vector is uniform for all graphs in an input collection and is given
by the following equation:

Length of FSMFV¼ 2þ
X

siþ
X

ci ð6Þ

where
2
 2 refers to the features for graph order and graph size,P

2
 si refers to the sum of number of bins in fuzzy interval

encoded histograms for numeric information in graph (i.e.
attribute i),
2

P

ci refers to the sum of number of bins in crisp interval
encoded histograms for symbolic information in graph.
5.2.3. Description

The values of attribute i in input graph AGe are fuzzified by
employing its si fuzzy intervals (learned during unsupervised
learning phase) and trapezoidal membership function.
Mathematically, the membership function a defined over a
trapezoidal interval x is given by Eq. (7). In Eq. (7), x refers to
an instance of attribute i to be fuzzified and a,b,c,d refers to the
limits of a trapezoidal fuzzy interval for attribute i. Function
aðxÞ computes the degree of membership of an instance x with
the trapezoidal interval defined by a,b,c,d. The possible mem-
berships can be a full membership if x is between b and c, a

partial membership if x is between a and b or is between c and d,
or it can be a no membership if x is outside the interval a,b,c,d.
We represent the fuzzy histogram of attribute i as hnum

i , which
actually refers to the fuzzy histogram for node degrees (hd in
Fig. 3), the fuzzy histograms for numeric node attributes
resemblance (hnr

d and hnr
1 ,hnr

2 , . . . ,hnr
k in Fig. 3), the fuzzy histo-

grams for numeric and symbolic edge attributes resemblance
(her

1 ,her
2 , . . . ,her

l in Fig. 3), the fuzzy histograms for numeric node
attributes (hn

1,hn
2, . . . ,hn

k in Fig. 5) and the fuzzy histograms for
numeric edge attributes (he

1,he
2, . . . ,he

l in Fig. 5). The fuzzy
histogram of an attribute i represents the embedding of
attribute i for input graph AGe. For an input graph AGe, the
fuzzy histogram hnum

i for attribute i is constructed by first
computing the degree-of-memberships of all instances of attri-
bute i in AGe for the si fuzzy intervals. And then summing the
memberships for each of the si fuzzy interval:

aðxÞ ¼

ðx�aÞ=ðb�aÞ arxob

1 brxrc

ðx�dÞ=ðc�dÞ coxrd

0 otherwise

���������

���������
ð7Þ

Each symbolic attribute j in input graph AGk is encoded by a
histogram of all its possible modalities (or labels). This histo-
gram encodes the number of instances for each possible label of
the symbolic attribute. We call this histogram as a crisp
histogram (in-contrary to fuzzy histogram for numeric attri-
butes). We call a crisp histogram for a symbolic attribute j as
hsym

j , which actually referrers to the crisp histograms for
symbolic node attributes resemblance (hnr

1 ,hnr
2 , . . . ,hnr

k in
Fig. 3), the crisp histograms for symbolic node attributes
(hn

1,hn
2, . . . ,hn

k in Fig. 5) and the crisp histograms for symbolic
edge attributes (he

1,he
2, . . . ,he

l in Fig. 5).
After constructing the fuzzy interval encoded histograms for each

numeric attribute i and crisp histogram for each symbolic attribute j,
the FSMFVe for input graph AGe is constructed from the value of
graph order, the value of graph size and fuzzy interval encoded
histograms hnum

i of its node degree, numeric node and edge
attributes appended by the crisp histograms hsym

j for symbolic node
and edge attributes. This gives an embedding of the input graph AGe

into a feature vector FSMFVe. The histogram illustration of the graph



1 http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_

graphs.zip

M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 559
embedding phase and the resulting feature vectors for the example
graphs are given in Fig. 4. Two fuzzy trapezoidal intervals are used
for embedding node degree (½�1,�1,1,2� and ½1,2,1,1�) whereas
three fuzzy trapezoidal intervals are used for node attribute ‘L’ and
edge attribute ‘RL’ ([�1,�1,0:5,1], [0.5, 1, 1.5, 2] and ½1:5,2,1,1�)
and three fuzzy intervals are used for embedding numeric resem-
blance attributes (½�1,�1,0:25,0:5�, [0.25, 0.5, 0.75, 1.0],
½0:75,1:0,1,1�). Two fuzzy intervals are used for embedding
resemblance attribute for ‘Angle’ (½�1,�1,0,1:0�, ½0,1:0,1,1�).
The symbolic edge attribute ‘Angle’ has two possible labels. Thus,
in total the FSMFV for these graphs is comprised of 23 features (1 for
graph order, 1 for graph size, 2 for node degree, 3 for node attribute
‘L’, 3 for resemblance on edge attribute ‘RL’, 2 for resemblance on
edge attribute ‘Angle’, 3 for edge attribute ‘RL’, 2 for edge attribute
‘Angle’, 3 for resemblance on ‘L’, 3 for resemblance on ‘nodeDegree’).

Algorithm 5.1. GETINITCRISPINTERVAL (listvaluesAttributei, ni).

comment: Computes equally spaced crisp intervals.
comment: Requires: List of values of an attribute i

comment: Requires: Number of crisp intervals for attribute i

ðniZ2Þ
comment: Returns: ‘ni’ crisp intervals for attribute i

equallySpacedBins ’ GETEQUALPACBIN(listvaluesAttributei, ni)
crispIntervals ’ empty

st’�1

en ’ equallySpacedBins[1]

j’1
repeat

crispIntervals½j�:start’st

crispIntervals½j�:end’en

st’en

en’equallySpacedBins½jþ1�

j’jþ1

8>>>>>><
>>>>>>:
until j4ni

return (crispIntervals)

Algorithm 5.2. GETFUZZYOVLAPTRAPZINTERVAL (listvaluesAttributei, si).

comment: Computes fuzzy intervals for an attribute i.
comment: Requires: List of values of an attribute i

comment: Requires: Number of fuzzy intervals for attribute i

ðsiZ2Þ
comment: Returns: ‘si’ fuzzy intervals for attribute i

ni’2nsi�1
crispIntervals ’ GETINITCRISPINTERVAL (listvaluesAttributei,ni)
fuzzyIntervals ’ empty

fuzzyIntervals½1�:a’�1

fuzzyIntervals½1�:b’�1

fuzzyIntervals½1�:c’crispIntervals½1�:end

fuzzyIntervals½1�:d’crispIntervals½2�:end

j’1

jcrisp’0
repeat

j’jþ1

jcrisp’jcrispþ2

fuzzyIntervals½j�:a’fuzzyIntervals½j�1�:c

fuzzyIntervals½j�:b’fuzzyIntervals½j�1�:d

ifðjcrispþ1ZniÞ

then

fuzzyIntervals½j�:c’1

fuzzyIntervals½j�:d’1

break

8><
>:

fuzzyIntervals½j�:c’crispIntervals½jcrispþ1�:end

fuzzyIntervals½j�:d’crispIntervals½jcrispþ2�:end

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
until jZsi

return (fuzzyIntervals)

6. Experimentations

The experimentation has been performed to confirm that
FMGE and the subsequent classification and clustering in real
valued vector space are not only applicable to different graph
classification and clustering problems, but also that in certain
cases it outperform the classical techniques for the latter. We
have employed various standard datasets from the fields of
graphics recognition, object recognition and document image
analysis for addressing the problems of recognition of graphic
primitives, object classification and query by example (QBE) and
focused retrieval in graphic document images.

6.1. Graph datasets

We have employed graph datasets from IAM graph database
repository [32] for document image analysis and graphics recog-
nition experimentation and GEPR graph database [16] for object
recognition experiments. For application of FMGE to hard pro-
blems of query by example (QBE) and focused retrieval in graphic
document image repositories, we have constructed a graph
repository by extracting graphs from images of architectural floor
plans and electronic diagrams from SYSED image dataset [33] and
have made it publicly available1 for academia and research
purposes. Tables 1–3 summarize characteristic properties of the
graph datasets.

IAM Letter, GREC, Fingerprint and Mutagenicity graphs: Letter
graph dataset is comprised of graphs extracted from drawings of
15 capital letters of Roman alphabet that consists of straight lines
only i.e. A, E, F, H, I, K, L, M, N, T, V, W, X, Y and Z. The line
drawings are converted into graphs by representing lines by
undirected edges and ending points of lines by nodes. Edges are
unlabeled while each node is labeled with a two-dimensional
attribute giving its position relative to a reference coordinate
system. In order to test classifiers under different conditions,
distortions are applied on the graphs with three different levels of
strength (low, medium and high).

GREC graph dataset is composed of graphs representing 22
symbols from architectural and electronic drawings. Graphs are
extracted from denoised images by tracing the lines from end to
end and detecting intersections and corners. Ending points,
corners, intersections and circles are represented by nodes and
labeled with a two-dimensional attribute giving their position.
The nodes are connected by undirected edges which are labeled
as line or arc. An additional attribute specifies the angle with
respect to the horizontal direction or the diameter in case of arcs.
For an adequately sized set, the graphs are distorted by transla-
tions and scalings of the graphs in a certain range, and random
deletions and insertions of both nodes and edges.

Fingerprints are converted into graphs by representing ending
points and bifurcation points of the skeletonized regions in
filtered and denoised images by nodes. Undirected edges are
inserted to link nodes that are directly connected through a ridge
in the skeleton. Each node is labeled with a two-dimensional
attribute giving its position. Edges are attributed with an angle
denoting their orientation with respect to horizontal direction.

Mutagenicity is the ability of a chemical compound to cause
mutations in DNA and is a property that hampers a compound to

http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip
http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip


M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565560
become a marketable drug [34]. The molecules are converted into
attributed graphs in a straightforward manner by representing
atoms as nodes and the covalent bonds as edges. Nodes are
labeled with the number of the corresponding chemical symbol
and edges by the valence of the linkage.

GEPR graphs: The GEPR graph database consists of graphs
extracted from three large publicly available image databases, i.e.
the Amsterdam Library of Object Images (ALOI), the Columbia Object
Image Library (COIL) and the Object Databank by Carnegie-Mellon
University (ODBK). The images are smoothed using a Gaussian filter,
they are segmented using a Pyramidal segmentation algorithm and a
Table 1
IAM graph database. Number of attributes is given as a pair ‘‘numeric;symbolic’’.

Dataset Size Classes Avg Max Attributes

Train Valid Test 9V9 9E9 9V9 9E9 V E

Letter LOW 750 750 750 15 4.7 3.1 8 6 2;0 0;0

Letter MED 750 750 750 15 4.7 3.2 9 7 2;0 0;0

Letter HIGH 750 750 750 15 4.7 4.5 9 9 2;0 0;0

GREC 836 836 1628 22 11.5 12.2 25 30 2;1 1;1

Fingerprint 500 300 2000 4 5.4 4.4 26 25 2;0 1;0

Mutagenicity 500 500 1500 2 30.3 30.8 417 112 0;1 1;0

Table 2
GEPR graph database (number of attributes given as pair ‘‘numeric;symbolic’’).

Dataset Size Classes Avg Max Attributes

9V9 9E9 9V9 9E9 V E

ALOI 1800 25 18.37 17.25 134 156 2;0 0;0

COIL 1800 25 34.88 32.33 100 92 2;0 0;0

ODBK 1248 104 56.91 54.37 528 519 2;0 0;0

Table 3
SESYD graph dataset details.

Image Attributed graph

Electronic diagrams Backgrounds 8 Avg. order 212

Models 21 Avg. size 363

Symbols 9600 Node attribs. 4

Edge attribs. 2

Documents 800 Graphs 800

Queries 1000 Graphs 1000

Architectural floor plans Backgrounds 2 Avg. order 359

Models 16 Avg. size 733

Symbols 4216 Node attribs. 4

Edge attribs. 2

Documents 200 Graphs 200

Queries 1000 Graphs 1000

Table 4
Validating the construction of Fuzzy Structural Multilevel Feature Vector of FMGE.

Dataset Recognition rate [1-NN classifier]

Graph level features Structural level features

Letter LOW 27.3 92.5

Letter MED 22.4 63.6

Letter HIGH 21.1 46.1

GREC 52.5 93.9

Fingerprint 47.6 64.5

Mutagenicity 58.4 65.8
Region Adjacency Graph (RAG) is constructed. The nodes of graph
have the relative size and average color components of the corre-
sponding regions as attributes and the edges are unlabeled [16].

SESYD graphs: The SESYD image dataset contains synthetically
generated and degraded line drawing document images of archi-
tectural floor plans and electronic diagrams [33]. The query
images simulate contextual noise which occurs in cropped
regions of graphic document images. The images are represented
by attributed graphs by using the work of Qureshi et al. [35]. The
topological and geometric details about structure of graphic
content are extracted and are represented by an attributed
relational graph (ARG). In first step, the graphic content is
vectorized and is represented by a set of primitives. In next step,
these primitives become nodes and topological relations between
them become arcs in ARG. As attributes nodes have relative-length

(normalized between 0 and 1), primitive-type (Vector for filled
regions of shape and Quadrilateral for thin regions) and a two-
dimensional position attribute; whereas arcs of the graph have
connection-type (one of L, X, T, P, S) and relative-angle (normalized
between 01 and 901) as attributes.

6.2. Graph classification

The graph classification experimentation has been performed
on IAM Letter, GREC, Fingerprint and Mutagenicity graphs (details
in Table 1). The initial crisp intervals for graph classification
experimentation are obtained by employing an equal spaced
discretization technique. This permits FMGE to ignore the shape
of distribution of an attribute i for learning si fuzzy intervals for it.
The shape of this distribution is not important and keeping FMGE
independent of it allows to learn on a set of graphs and to
generalize to unseen graphs in diverse test sets.

Table 4 presents classification rates with an insight in the
FSMFV construction process, for different datasets in IAM graph
database. The classification rates have been obtained by employ-
ing a 1-NN classifier. We have used equal spaced discretization
technique and three intervals for embedding each numeric
attribute in graph. Also, average resemblance of the couple of
edges is used for defining edge attributes resemblance for nodes.
The results in Table 4 show that for all datasets the structural and
elementary level features obtain better classification rates than
graph level features. This is partly because of the fact that the
number of features for each of these categories is more than the
number of graph level features, and partly because of the fact that
structure and attribute details in a graph provide critically
important discriminatory information about the graph. The
feature vector construction validation experimentation clearly
shows that FMGE gets most of its discriminatory power from
structural and elementary features.

The graph classification experimentation was repeated for
2–30 intervals for each attribute i in graph and the number of
intervals maximizing the classification rate on validation set were
used for evaluating the performance on test set. The length of
Elementary level features GraphþStructuralþElementary features

81.3 94.1

48.7 73.6

47.3 56.8

96.6 97.3

75.9 73.7

68.5 68.5



Table 5
Experimental results for graph classification on IAM graph database repository.

Dataset Graph edit distance based
ref. system [k-NN classifier]

Dissimilarity based embed.
Bunke et al. [4] [SVM classifier]

FMGE
resemblance:AVG

[k-NN classifier]

FMGE
resemblance:STD

[k-NN classifier]

FMGE
rresemblance:AVG

[SVM classifier]

FMGE
resemblance:STD

[SVM classifier]

Letter LOW 99.3 99.3 97.1 97.1 98.2 98.2

Letter MED 94.4 94.9 75.7 75.7 83.1 83.1

Letter HIGH 89.1 92.9 66.5 66.5 70.0 70.0

GREC 82.2 92.4 97.5 97.5 99.4 99.4

Fingerprint 79.1 79.9 79.7 87.6 87.1

Mutagenicity 66.9 69.1 68.2 76.5 76.5

M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 561
obtained feature vectors varied from 50 to 150. Table 5 presents
the classification results for IAM graphs and compares them with
a reference system and the best state-of-the-art results from
dissimilarity based graph embedding technique of Bunke
et al. [4]. We employed a nearest neighbor classifier with
Euclidean distance for comparing the graph classification results
of FMGE with reference system. We optimized the parameter
k (over 1 to 5 nearest neighbors) along-with the number of
intervals, on validation set for every dataset. For evaluating the
performance on test set we used the parameter values which
maximized the classification rate on validation set. Our choice of
the nearest neighbor classifier (k-NN) with Euclidean distance, is
motivated from the reference system on IAM graphs. The refer-
ence system employs a graph edit distance based nearest neigh-
bor classifier, because of the fact that there is a lack of general
classification algorithms that can be applied to graphs. One of
the few classifiers directly applicable to arbitrary graphs is the
k-nearest-neighbor classifier (k-NN). Given a labeled set of train-
ing graphs, an unknown graph is assigned to the class that occurs
most frequently among the k nearest graphs (in terms of edit
distance) from the training set. The decision boundary of this
classifier is a piecewise linear function which makes it very
flexible. Contrary to our choice of nearest neighbor classifier,
Ref. [4] has employed an SVM classifier. To compare our results
with [4] we replicated their classifier configuration for our
experimentation. We employed an SVM classifier with RBF-
kernel. The SVM parameters were optimized on validation set
for every dataset and the values maximizing the classification rate
on validation set were used for evaluating the performance on
test set. Experimental results are presented for two setups of
FMGE. This refers to the way in which edge attributes resem-
blance is computed for nodes. Columns 3 and 5 show the
classification results, when the average resemblance (AVG) of
the couple of edges is used for defining edge attributes resem-
blance for nodes. Columns 4 and 6 show the classification results,
when the standard deviation of the resemblance (STD) of the
couple of edges is used for defining edge attributes resemblance
for nodes. Both setups give the same classification rates except for
fingerprint and mutagenicity graphs. This illustrates that for IAM
graphs the resemblance between the couple of edges for the
nodes remains stable in both setups.

IAM graphs are comprised of graphs with only two numeric
node attributes. These attributes give ðx,yÞ position of the corre-
sponding primitive in underlying image. Only GREC graphs have
an additional symbolic attribute on nodes. GREC, Fingerprint and
Mutagenicity graphs have attributes on edges. The structural and
elementary level information that FMGE extracts, is directly or
indirectly linked to the node and edge attributes. In our opinion,
the attributes on graphs in IAM dataset are not enough for FMGE
for extracting a lot of discriminatory information. However, even
then the results are comparable to the best state-of-the-art
results. The attributes on node and edges of GREC and Mutageni-
city graphs permits FMGE to obtain the highest classification
results for these graphs. For Letter LOW and Fingerprint graphs
FMGE results are comparable to state-of-the-art results and
reference system. For letter MED and letter HIGH graphs FMGE
results are not very good because of very high level of distortions
in graphs, which totally change the topology of graphs and the
underlying letter becomes unrecognizable even for a human
observer [34]. The reason that Bunke et al. [4] have better results
on some of the datasets is actually direct outcome of manual
selection of the prototype graphs for their method. As FMGE
extracts most of the information from node and edge attributes,
so more information on the nodes and edges of graphs will result
into extraction and eventually embedding of more discriminatory
information by FMGE and the classification performance will be
improved.

6.3. Graph clustering

The graph clustering experimentation has been performed on
IAM Letter, GREC, Fingerprint and Mutagenicity graphs (details
Table 1) and the GEPR graphs (details Table 2). Clustering is
generally performed in an unsupervised manner and normally for
clustering tasks no separate learning set is available. This scenario
is very well simulated by our experimentation. During a first pass
on the graph dataset to be clustered FMGE learned fuzzy intervals
for various numeric attributes in graphs and then during second
pass on the same graph dataset it employed these fuzzy intervals
for graph embedding. A more sophisticated and advanced dis-
cretization technique has been employed for obtaining the initial
set of crisp intervals for graph clustering experimentation. This
technique is originally proposed by [36] for discretization of
continuous data and is based on use of Akaike Information
Criterion (AIC). It starts with an initial histogram of data and
finds optimal number of bins for underlying data by iteratively
merging the adjacent bins using an AIC-based cost function. This
gives an optimal set of crisp intervals for underlying data which
could be safely termed as equal frequency intervals. The resulting
fuzzy intervals, which are calculated from the spread of the
respective attribute’s values, are true representative of the shape
of distribution and are very interesting for FMGE.

IAM Letter, GREC, Fingerprint and Mutagenicity graphs: The
graphs in training, validation and test sets of the respective graph
datasets were merged to construct datasets for graph clustering
experimentation. We have employed the well known and popular
k-means clustering paradigm with Euclidean distance and ran-
dom non-deterministic initialization for our experiments. Fig. 10
presents the Silhouette metric for analyzing the quality of
clustering. The Silhouette metric [37] is a standard cluster fitness
validation metric. It measures the standardized difference
between separation of clusters and the average spread of clusters.
The average Silhouette width over all clusters is a value in the
range [�1, 1] – the closer this value is to 1 the better is the cluster
quality. The curves in Fig. 10 present the Silhouette metric for
2–25 clusters. As an example to understand these results, consider



Fig. 10. Number of clusters versus average Silhouette width for k-means clustering.

Table 6
Quality of k-means clustering in FSMFV feature space.

Dataset FSMFV feature vector space
correctly clustered graphs (%)

Letter LOW 89

Letter MED 60

Letter HIGH 41

GREC 82

Fingerprint 57

Mutagenicity 82

Table 7
Performance indexes obtained for GEPR graph

datasets.

Dataset Performance index

ALOI 0.379

COIL 0.377

ODBK 0.355

M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565562
that the mutagenicity graphs originally have two classes (Table 1)
and in Fig. 10 the Silhouette metric for Mutagenicity graphs for
two classes is 0.58. The obtained Silhouette metric for actual
number of clusters in the datasets, is always near or superior to
0.2. The latter is a generally used threshold for compact, better
separable and good structured clusters.

Together with Silhouette metric we have evaluated the quality of
FMGE graph clustering by the percentage of correctly clustered
graphs. Table 6 presents the results. We have used the actual number
of classes in dataset (Table 1) as the number of clusters to be found by
k-means clustering. The presented results show the quality of
k-means clustering in the FSMFV feature space, which is calculated
as the ratio of correctly clustered graphs to total number of graphs in
dataset. For example, a 89% clustering quality for Letter LOW graphs
means that 89% of the graphs are assigned to correct clusters. These
results demonstrate that the proposed methodology of first embed-
ding graphs into feature vectors and then applying a clustering
technique has the significant potential to turn an impossible opera-
tion in original graph space into a realizable operation with an
acceptable accuracy in resulting feature vector space. The results
demonstrate graph clustering abilities of FMGE and highlight its
unsupervised learning capabilities. The percentage of correctly clus-
tered graphs for Letter LOW graphs, GREC graphs and Mutagenecity
graphs is very good ðZ82%Þ. However, for Letter MED graphs and
Fingerprint graphs its not so good. The low clustering quality for letter
HIGH graphs is because of lack of discreminatory attributes on nodes
and edges and the fact that high level of distortions entirely changes
the topology of the graph. This effects the FSMFV of the graphs in this
dataset and results into too much overlap between clusters.

GEPR graphs: The graphs were embedded into feature vectors
by FMGE and the scripts in GEPR graphs repository were used to
evaluate the performance index of the clustering for obtained
FSMFVs. These scripts employ a C index based clustering
validation index to evaluate the separation between classes
[16]. The smaller the value, the better is the separation of the
classes; the index value is in the interval [0, 1] reaching 0 in the
ideal case in which all the inter-class distances are smaller than
all the intra-class distances [16]. Table 7 provides the cluster
validation index for GEPR graphs. GEPR graphs have only two
numeric attributes on nodes and no attributes on edges. The lack
of attributes on edges and less number of attributes on nodes is
the main reason for adequate clustering quality. For graphs
extracted from object images a very important attribute that
can be extracted from images is the relations between neighbor-
ing parts of the object. In a region adjacency graph this could be
represented by the relationship between adjacent regions of the
image. The addition of more attributes on nodes and edges of the
graphs will enable FMGE to extract and eventually embed more
information on graphs. This will result into more discriminant
feature vectors and higher quality clustering.

6.4. Graph retrieval

The graph retrieval experimentation on SESYD graphs presents
an application of FMGE to the hard problems of query by example
(QBE) and focused retrieval in graphic document image reposi-
tories. The growing size of document image repositories has
resulted in an increasing demand from users to have an efficient
browsing mechanism for graphic content. The format of these
documents restricts the use of classical keyword based indexing
mechanisms and a very interesting research problem is to
investigate into mechanisms of automatically indexing the con-
tent of graphic document images. The fact that graph based
representations are widely used for graphic document images
[4,7,38,39], turns content spotting for graphic document into the
problems of graph retrieval and subgraph spotting. The system
outlined in this section is reproduced from our recent work in
[40]. We achieve graph retrieval and subgraph spotting through



M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 563
explicit graph embedding. A graph repository is automatically
indexed during an off-line learning phase; where we (i) break the
graphs into 2-node subgraphs (a.k.a. cliques of order 2), which are
primitive building-blocks of a graph, (ii) embed the 2-node
subgraphs into feature vectors by employing our recently pro-
posed explicit graph embedding technique, (iii) cluster the feature
vectors in classes by employing a classic agglomerative clustering
technique, (iv) build an index for the graph repository and
(v) learn a Bayesian network classifier. The subgraph spotting is
achieved during the on-line querying phase; where we (i) break
the query graph into 2-node subgraphs, (ii) embed them into
feature vectors, (iii) employ the Bayesian network classifier for
classifying the query 2-node subgraphs and (iv) retrieve the
respective graphs by looking-up in the index of the graph
repository. The graphs containing all query 2-node subgraphs
form the set of result graphs (AGresult) for the query (AGquery). For
spotting the query graph AGquery in a result graph AGresult, we
employ the adjacency matrix of graph AGresult along with a score
function. The adjacency matrix of graph AGresult has a value of ‘‘0’’
if there is no edge between ‘‘node1’’ and ‘‘node2’’ in the original
graph AGresult, a value of ‘‘1’’ if there is an edge between ‘‘node1’’
and ‘‘node2’’ in the original graph AGresult and a value of ‘‘2’’ if one
of the query 2-node subgraphs is classified (by Bayesian network)
as belonging to the cluster of this 2-node subgraph (which
compose of edge between ‘‘node1’’ and ‘‘node2’’). The query graph
AGquery is finally spotted in the result graph AGresult, by looking up
in the neighborhood of each 2-node subgraph of AGresult which is
in the result i.e. each ‘‘AGresultði,jÞ ¼ 2’’ in the adjacency matrix of
result graph AGresult. We explore ‘‘o’’ connected neighbors of each
‘‘AGresultði,jÞ ¼ 2’’. The parameter ‘‘o’’ is proportional to the graph
order of query graph AGquery(9Vquery9). We compute a score for
each ‘‘AGresultði,jÞ ¼ 2’’ using Eq. (8). The computed score of
‘‘AGresultði,jÞ ¼ 2’’ also gives a confidence value for subgraph spot-
ting of query graph AGquery in result graph AGresult:

score¼
X2

z ¼ 0

z�
9z9
o

� �
ð8Þ

where
�
 z is a value in the adjacency matrix (either 0,1 or 2),

�
 9z9 is number of times the value z occurs in neighborhood and

�
 o is number of connected neighbors that are looked-up.

In our experimentation, the electronic diagrams and architec-
tural floor plans graphs (Table 3), were treated independently of
each other for learning and querying phases of the system. During
the automatic indexation phase of graph repositories, a total of
Fig. 11. Precision and recall plot.
516,714 2-node subgraphs were extracted for electronic diagrams
and 305,824 2-node subgraphs for architectural floor plans. These
2-node subgraphs were clustered into 455 classes for electronic
diagrams and 211 classes for architectural floor plans. The
indexation of electronic diagrams graph repository took 17 h on
a standard PC with 2 GB of RAM and the subgraph spotting was
performed in real-time. Fig. 11 presents the precision and recall
plot for the central tendency of the queries of respective attrib-
uted graph datasets. It is important to highlight here that the
results in Fig. 11 shows the retrieval performance of the system.
The focused retrieval performance of the system was evaluated
manually for a subset of queries. The graph retrieval experimen-
tation results clearly demonstrate that FMGE is capable of auto-
matically indexing graph repositories and is capable of
maintaining a high precision rate for sufficiently large graph
repositories. The performance of the system strongly depends
upon the graph extraction phase. In our case, we have used a
graph extraction method, which is based on a prior vectorization
phase. The employed vectorization technique approximates the
circles and arcs by a set of straight lines. A small distortion in the
shape of underlying content results into a change in topology of
the graph and it effects the graph embedding phase of the system.
Because of the latter and the fact that architectural floor plans are
comprised of many symbols with arcs and circles, the system has
a low performance for this dataset. However, generally (for the
given datasets) the system is able to maintain a high precision
value for the series of different recall values (Fig. 11). This
provides a very interesting solution for the automatic indexation
of graph repositories for retrieval and (specially for) browsing of
content in graph representation of graphic document image
repositories. Our proposed method does not rely on any domain
specific details and offers a very general solution to the problem
of subgraph spotting; indeed equally applicable to a wide range of
application domains where the use of graph as a data structure is
mandatory. The system does not impose any strict restrictions on
the size of query subgraph. The fact that the system does not
require any labeled training-set enables its less expensive and fast
deployment to a wide range of application domains.
7. Discussion

We have outlined to use two basic discretization techniques in
this paper. However FMGE is fully capable of employing sophis-
ticated state-of-the-art discretization methods. Also, our pro-
posed framework employs trapezoidal membership function
from fuzzy logic but FMGE is fully capable of utilizing any of
the available membership functions from fuzzy logic. In light of
domain knowledge, appropriate choices could be made for dis-
cretization technique and fuzzy membership function.

An important parameter of FMGE is the number of fuzzy
intervals to be associated to each attribute. The unsupervised
learning phase of FMGE learns si fuzzy intervals for an attribute i

in input collection of graphs. The parameter si for attribute i is
independent of other attributes. It is also important to highlight
here that this parameter is not necessarily same for all attributes.
This parameter can be learned and tested on a validation dataset,
if one is available. This is demonstrated by our experimentation
on graph classification. If no validation dataset is available the
number of fuzzy intervals si has to be specified manually. A third
possibility is that if the training set can be considered to be a true
representative of the test set, an equal frequency discretization
technique could be used for automatically finding the appropriate
number of fuzzy intervals. This is demonstrated by our graph
clustering experimentation. As a general rule of thumb, using
three fuzzy intervals for the attributes is a safe choice. However, a



Fig. 12. Time complexity of unsupervised learning phase of FMGE for syntheti-

cally generated graphs from IAM GREC dataset. All parameters except number of

attributes are kept constant.

M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565564
more intelligent choice could be made in the light of domain
knowledge.

For embedding edge attributes resemblance for nodes (struc-
tural level information), we have outlined the use of a measure of
central tendency (i.e. mean) and the spread of attribute’s resem-
blance (i.e. the standard deviation) on the attribute resemblance
of all couple of edges for a node.

We have used a simple non-parametric classifier for graph
classification experimentation and a basic clustering technique
for graph clustering experimentation for demonstration purposes.
However, all sophisticated classifiers and clustering methods are
fully applicable to the resulting feature vectors of FMGE.

7.1. Complexity

The graph embedding phase of FMGE requires only a fraction
of a second and can be performed in real-time on standard PC. The
unsupervised learning phase of FMGE can be computational
intensive depending on the size of dataset and the graphs.
However, this phase is performed off-line and has linear time
complexity. This is illustrated in Fig. 12, where we present time
complexity of the learning phase of FMGE.
8. Conclusion and perspectives

We have presented a method of explicit graph embedding,
with an aim to bridge the gap between structural and statistical
approaches of pattern recognition. Our work proposes a straight-
forward, simple and computational efficient solution for facilitat-
ing the use of graph based powerful representations together
with learning and computational strengths of state-of-the-art
machine learning, classification and clustering. The proposed
method exploits multilevel analysis of graph for embedding it
into a feature vector. The feature vector contains graph level
features (graph order and graph size), along-with structural level
features (node degree, node attributes resemblance for edges and
edge attributes resemblance for nodes) and elementary level
features (node attributes and edge attributes). We have mini-
mized the information loss, while mapping from continuous
graph space to discrete vector space, by employing fuzzy over-
lapping trapezoidal intervals. These intervals are learned during
an unsupervised learning phase. The intervals are employed
during graph embedding phase for constructing fuzzy interval
encoded histograms for structural and elementary level features.
The method is linear to order and size of graphs and the number
of node and edge attributes. The method could be deployed in an
unsupervised fashion for graph clustering problem even if no
separate learning set is available as it has built-in capability to
implicitly learn from the input collection of graphs. Its unsuper-
vised learning capabilities also allows it to generalize to unseen
graphs i.e. to be deployed in a supervised fashion where it learns
on a graph dataset and embeds unseen graphs. The experimental
results are encouraging and demonstrate the applicability of our
method to graph clustering and classification problems.

Our current research findings are encouraging and ongoing
research is in progress to take this work forward for improving
the quality of embedding achieved by FMGE. Important directions
of future research include application of dimensionality reduction
and feature selection methods to the resulting feature vectors, the
detection of outliers for cleaning leaning set and exploiting graph
paths and Morgan’s index [41] for including more information on
the topology of graph.
Acknowledgments

This work was partially supported by the Spanish projects
TIN2008-04998, TIN2009-14633-C03-03 & CSD2007-00018 and
partially by the PhD grant PD-2007- 1/Overseas/FR/HEC/222 from
Higher Education Commission of Pakistan.

References

[1] J. De Sa, Pattern Recognition: Concepts, Methods, and Applications, Springer
Verlag, 2001.

[2] M. Friedman, A. Kandel, Introduction to Pattern Recognition, World Scientific,
1999.

[3] H. Bunke, S. Gunter, X. Jiang, Towards bridging the gap between statistical
and structural pattern recognition: two new concepts in graph matching, in:
International Conference on Advances in Pattern Recognition, Springer, 2001,
pp. 1–11.

[4] H. Bunke, K. Riesen, Recent advances in graph-based pattern recognition with
applications in document analysis, Pattern Recognition 44 (5) (2011)
1057–1067.

[5] K. Riesen, H. Bunke, Graph classification based on vector space embedding,
International Journal of Pattern Recognition and Artificial Intelligence 23 (6)
(2009) 1053–1081.

[6] H. Bunke, C. Irniger, M. Neuhaus, Graph matching – challenges and potential
solutions, in: International Conference on Image Analysis and Processing,
2005, pp. 1–10.

[7] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in
pattern recognition, International Journal of Pattern Recognition and Artificial
Intelligence 18 (3) (2004) 265–298.

[8] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, S. Zucker, Indexing
hierarchical structures using graph spectra, IEEE Transactions on Pattern
Analysis and Machine Intelligence 27 (7) (2005) 1125–1140.

[9] M. Ferrer, E. Valveny, F. Serratosa, K. Riesen, H. Bunke, Generalized median
graph computation by means of graph embedding in vector spaces, Pattern
Recognition 43 (4) (2010) 1642–1655.

[10] R. Duda, P. Hart, D. Stork, Pattern Classification, vol. 2, Wiley Interscience,
2000.

[11] V. Roth, J. Laub, M. Kawanabe, J. Buhmann, Optimal cluster preserving
embedding of nonmetric proximity data, IEEE Transactions on Pattern
Analysis and Machine Intelligence 25 (12) (2003) 1540–1551.

[12] T. Chen, Q. Yang, X. Tang, Directed graph embedding, in: International Joint
Conference on Artificial Intelligence, 2007, pp. 2707–2712.

[13] E.L. Nathan Linial, Y. Rabinovich, The geometry of graphs and some of its
algorithmic applications, Combinatorica 15 (2) (1995) 215–245.

[14] B. Shaw, T. Jebara, Structure preserving embedding, in: International Con-
ference on Machine Learning, 2009, pp. 1–8.

[15] G. Lee, A. Madabhushi, Semi-supervised graph embedding scheme with
active learning (SSGEAL): classifying high dimensional biomedical data, in:
Pattern Recognition in Bioinformatics, Lecture Notes in Computer Science,
vol. 6282, Springer, 2010, pp. 207–218.

[16] P. Foggia, M. Vento, Graph embedding for pattern recognition, in: D. Ünay, Z.
C- ataltepe, S. Aksoy (Eds.), Recognizing Patterns in Signals, Speech, Images
and Videos, Lecture Notes in Computer Science, vol. 6388, Springer, 2010,
pp. 75–82.

[17] K. Riesen, H. Bunke, Graph Classification and Clustering Based on Vector
Space Embedding, World Scientific Publishing Co., Inc., 2010.

[18] R.C. Wilson, E.R. Hancock, B. Luo, Pattern vectors from algebraic graph theory,
IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (7) (2005)
1112–1124.



M.M. Luqman et al. / Pattern Recognition 46 (2013) 551–565 565
[19] M. Luqman, J. Lladós, J.-Y. Ramel, T. Brouard, A fuzzy-interval based approach
for explicit graph embedding, in: Recognizing Patterns in Signals, Speech,
Images and Videos, vol. 6388, 2010, pp. 93–98.

[20] S. Kramer, luc de Raedt, Feature construction with version spaces for
biochemical application, in: 18th International Conference on Machine
Learning, 2001, pp. 258–265.

[21] A. Inokuchi, T. Washio, H. Motoda, An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data, Lecture Notes in Computer Science,
vol. 1910, 2000, pp. 13–23.

[22] N. Sid�ere, P. Héroux, J.-Y. Ramel, Vector representation of graphs: application
to the classification of symbols and Letters, in: International Conference on
Document Analysis and Recognition, 2009, pp. 681–685.

[23] B. Luo, Spectral embedding of graphs, Pattern Recognition 36 (10) (2003)
2213–2230.

[24] X. Bai, H. Yu, E. Hancock, Graph matching using spectral embedding and
alignment, in: International Conference on Advances in Pattern Recognition,
vol. 3, IEEE, 2004, pp. 398–401.

[25] a. Torsello, E. Hancock, Graph embedding using tree edit-union, Pattern
Recognition 40 (5) (2007) 1393–1405.

[26] D. Emms, R. Wilson, E. Hancock, Graph embedding using quantum commute
times, in: International Conference on Graph-based Representations in
Pattern Recognition, Springer-Verlag, 2007, pp. 371–382.

[27] H. Chen, H. Chang, T. Liu, Local discriminant embedding and its variants, in:
Computer Vision and Pattern Recognition, IEEE, 2005, pp. 846–853.

[28] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions
on Pattern Analysis and Machine Learning 22 (8) (2002) 888–905.

[29] P. Ren, R. Wilson, E. Hancock, Graph Characterization via Ihara coefficients,
IEEE Transactions on Neural Networks 22 (2011) 233–245.

[30] H. Ishibuchi, T. Yamamoto, Deriving fuzzy discretization from interval
discretization, in: International Conference on Fuzzy Systems, IEEE, 2003,
pp. 749–754.
[31] H. Liu, F. Hussain, C. Tan, M. Dash, Discretization: an enabling technique, Data
Mining and Knowledge (2002) 393–423.

[32] K. Riesen, H. Bunke, IAM graph database repository for graph based pattern
recognition and machine learning, in: Structural, Syntactic, and Statistical
Pattern Recognition, Springer, 2010, pp. 287–297.

[33] M. Delalandre, E. Valveny, T. Pridmore, D. Karatzas, Generation of synthetic
documents for performance evaluation of symbol recognition & spotting
systems, International Journal on Document Analysis and Recognition (2010)
1–21.

[34] K. Riesen, Classification and Clustering of Vector Space Embedded Graphs,
Ph.D. Thesis, University of Bern, January 2010.

[35] R. J. Qureshi, J.-Y. Ramel, H. Cardot, P. Mukherji, Combination of Symbolic and
Statistical Features for Symbols Recognition, in: International Conference on
Signal Processing, Communications and Networking, 2007, pp. 477–482.

[36] O. Colot, P. Courtellemont, A. El-Matouat, Information criteria and abrupt
changes in probability laws, in: Signal Processing VII: Theories and Applica-
tions, 1994, pp. 1855–1858.

[37] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to
Cluster Analysis, John Wiley & Sons, Ltd., 1990.

[38] J. Lladós, E. Valveny, G. Sánchez, E. Martı́, Symbol Recognition: Current
Advances and Perspectives, in: Graphics Recognition Algorithms and Appli-
cations, vol. 2390, (2002) pp. 104–128.

[39] K. Tombre, S. Tabbone, P. Dosch, Musings on symbol recognition, in: Graphics
Recognition. Ten Years Review and Future Perspectives, (2006) pp. 23–34.

[40] M. M. Luqman, J.-Y. Ramel, J. Lladós, T. Brouard, Subgraph Spotting through
Explicit Graph Embedding : An Application to Content Spotting in Graphic
Document Images, in: Eleventh International Conference on Document
Analysis and Recognition (ICDAR), (2011) pp. 870–874.

[41] H.L. Morgan, The generation of a unique machine description for chemical
structures - a technique developed at chemical abstracts service, Journal of
Chemical Documentation 5 (2) (1965) 107–113.
Muhammad Muzzamil Luqman received his Ph.D. degree in Computer Science from Franc-ois-Rabelais University of Tours, France and Autonoma University of Barcelona,
Spain in 2012. He got his masters from Franc-ois-Rabelais University of Tours, France in 2008. In 2004 he was awarded gold medal and academic roll of honor by
Government College University Lahore, Pakistan for achieving distinction in Bachelors of Computer Science (honors). Currently Luqman is a teaching and research assistant
at Franc-ois-Rabelais University of Tours, France. His main research interests include Structural Pattern Recognition, Machine Learning, Document Image Analysis/
Recognition and Graphics Recognition.
Jean-Yves Ramel received his Ph.D. degree in Computer Sciences in 1996 from the National Institute of Applied Sciences of Lyon (INSA Lyon France). After being an
Assistant Professor at the Industrial Engineering Department of the National Institute of Applied Sciences of Lyon from 1998 to 2002; Jean-Yves Ramel is currently a Full
Professor at the Computer Science Department of PolytechTours (French engineering school). He is also a staff researcher of the Computer Science Laboratory of Tours in
the Image Analysis and Pattern Recognition Group (EA 2101). His current research fields are image analysis, document image indexation and structural pattern recognition.
He has been the head of a number of Image Analysis and Indexation RþD projects and published several papers in national and international conferences and journals.
Jean-Yves RAMEL is an active member of the Pattern Recognition for Image Understanding French Association (AFRIF), a member society of the IAPR (TC-10, TC-11 and
TC-15) and also a PC member of a number of international conferences. His team has developed several open source software dealing with Document Image Analysis.
Jean-Yves RAMEL was the recipient of a Google Digital Humanities Award in 2010 and has also experience in technological transfer and patent registration.
Josep Lladós received the degree in Computer Sciences in 1991 from the Universitat Polit�ecnica de Catalunya and the Ph.D. degree in Computer Sciences in 1997 from the
Universitat Aut �onoma de Barcelona (Spain) and the Université Paris 8 (France). Currently he is an Associate Professor at the Computer Science Department of the
Universitat Aut �onoma de Barcelona and is a staff researcher of the Computer Vision Center, where he is also the director. He is the head of the Pattern Recognition and
Document Analysis Group (2005SGR-00472). His current research fields are document analysis, graphics recognition and structural and syntactic pattern recognition. He
has been the head of a number of Computer Vision RþD projects and published several papers in national and international conferences and journals. J. Lladós is an active
member of the Image Analysis and Pattern Recognition Spanish Association (AERFAI), a member society of the IAPR. He is currently the chairman of the IAPR-ILC (Industrial
Liaison Committee). Formerly he served as chairman of the IAPR TC-10, the Technical Committee on Graphics Recognition, and also he is a member of the IAPR TC-11
(reading Systems) and IAPR TC-15 (Graph based Representations). He serves on the Editorial Board of the ELCVIA (Electronic Letters on Computer Vision and Image
Analysis) and the IJDAR (International Journal in Document Analysis and Recognition), and also a PC member of a number of international conferences. He was the
recipient of the IAPR-ICDAR Young Investigator Award in 2007. Josep Lladós has also experience in technological transfer and in 2002 he created the company ICAR Vision
Systems, a spin-off of the Computer Vision Center working on Document Image Analysis, after win the entrepreneurs award from the Catalonia Government on business
projects on Information Society Technologies in 2000.


	Fuzzy multilevel graph embedding
	Introduction
	Graph embedding
	Proposed method

	Related works
	Our contribution

	Definitions and notations
	Overview of fuzzy multilevel graph embedding (FMGE)
	Input of FMGE
	Output of FMGE
	Description of feature vector of FMGE
	Embedding of graph level information
	Embedding of structural level information
	Embedding of elementary level information


	Framework of fuzzy multilevel graph embedding (FMGE)
	Unsupervised learning phase
	Input
	Output
	Description

	Graph embedding phase
	Input
	Output
	Description


	Experimentations
	Graph datasets
	Graph classification
	Graph clustering
	Graph retrieval

	Discussion
	Complexity

	Conclusion and perspectives
	Acknowledgments
	References




