
Pattern Recognition Letters 100 (2017) 96–103

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Graph edit distance contest: Results and future challenges

Zeina Abu-Aisheh

a , ∗, Benoit Gaüzere

b , Sébastien Bougleux

c , Jean-Yves Ramel a , Luc Brun

c ,
Romain Raveaux

a , Pierre Héroux

b , Sébastien Adam

b

a Université François Rabelais de Tours, 64, avenue Jean Portalis, Tours, 37200, France
b Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, Rouen, 760 0 0, France
c Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC UMR 6072, 6 Bd Maréchal Juin, Caen, 14050, France

a r t i c l e i n f o

Article history:

Received 8 April 2017

Available online 9 October 2017

MSC:

41A05

41A10

65D05

65D17

Keywords:

Graph edit distance

Pattern Recognition

Binary linear programming

Quadratic assignment

Branch-and-bound

a b s t r a c t

Graph Distance Contest (GDC) was organized in the context of ICPR 2016. Its main challenge was to in-

spect and report performances and effectiveness of exact and approximate graph edit distance methods

by comparison with a ground truth. This paper presents the context of this competition, the metrics and

datasets used for evaluation, and the results obtained by the eight submitted methods. Results are ana-

lyzed and discussed in terms of computation time and accuracy. We also highlight the future challenges

in graph edit distance regarding both future methods and evaluation metrics. The contest was supported

by the Technical Committee on Graph-Based Representations in Pattern Recognition (TC-15) of the Inter-

national Association of Pattern Recognition (IAPR).

© 2017 Elsevier B.V. All rights reserved.

e

t

s

t

t

p

n

m

a

s

e

h

b

t

b

2

1. Introduction

Computing a similarity or a dissimilarity measure between

graphs is a major challenge in pattern recognition. One of the most

well-known and used approaches to compute a distance between

two graphs is the Graph Edit Distance (GED). Computing the GED

consists in finding a sequence of graph edit operations (insertions,

deletions and substitutions of vertices and edges) which trans-

forms a graph into another with a minimal cost. However, comput-

ing the GED is NP-hard. Therefore, in the last four decades, several

approaches were proposed to compute approximations in polyno-

mial time [22] .

This paper reports the results of the Graph Distance Contest

(GDC) which was organized in the context of ICPR 2016. The aim

of the contest was to inspect performance and effectiveness of re-

cent methods which compute an exact or an approximate GED. The

quality of the output distances as well as the execution times of

the methods were used as keys for the inspection. Seven datasets

were integrated, each of them being composed of several types of

graphs with symbolic or numerical attributes attached to vertices

and edges.
∗ Corresponding author.

E-mail address: zeina.abu-aisheh@univ-tours.fr (Z. Abu-Aisheh).

w

[

m

https://doi.org/10.1016/j.patrec.2017.10.007

0167-8655/© 2017 Elsevier B.V. All rights reserved.
GDC was open to any method which computes a sequence of

dit operations transforming a graph into another one. All the par-

icipants were required to download the datasets to prepare the

ubmission of their programs. All the programs were executed by

he organizers on the same computer. Two constraints were put in

he contest. First, each submitted method could not exceed 30 s

er graph comparison. Second, concerning parallel methods, the

umber of threads was limited to 4.

This paper is organized as follows: Section 2 describes the

ethods submitted to GDC. Then, Section 3 specifies the protocol

nd the datasets used for this contest. Obtained results are pre-

ented and discussed in Section 4 . Note that a complementary and

xhaustive presentation of the results is provided on GDC website

ttp://gdc2016.greyc.fr . Last but not least, Section 5 highlights the

ottlenecks of both tested methods and GED performance evalua-

ion metrics, and proposes some possible tracks to go beyond these

ottlenecks.

. Inspected methods

Eight methods proposed by three different research groups

ere submitted. The beam search algorithm of Neuhaus et al.

21] was also added to the list of inspected methods. All these

ethods can be globally divided into three categories.

https://doi.org/10.1016/j.patrec.2017.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.10.007&domain=pdf
mailto:zeina.abu-aisheh@univ-tours.fr
http://gdc2016.greyc.fr
https://doi.org/10.1016/j.patrec.2017.10.007

Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103 97

G

r

s

t

a

d

d

t

P

v

a

c

e

L

H

p

f

s

i

r

g

O

t

b

a

e

i

i

t

j

e

p

c

c

s

m

a

G

p

t

a

H

o

B

g

a

t

t

t

a

G

a

b

a

t

i

a

s

t

t

f

v

m

c

t

t

r

s

a

t

w

O

v

F

T

i

t

t

b

a

r

T

m

c

B

p

r

T

i

c

o

a

t

a

p

r

s

t

t

e

t

a

e

t

l

s

e

m

e

D

b

a

fi

p

t

c

m

o

r

p

[
ED as linear or quadratic assignment problems. The GED can be

eformulated as a Quadratic Assignment Problem (QAP) when the

et of vertices of both graphs are extended enough by null vertices

o represent removal and insertions operations [4,8,22] . Since QAP

re NP-hard in general, many approximation algorithms have been

eveloped. In the GED, the notion of bipartite GED has been intro-

uced in [24] . Based on the extended representation of the graphs,

he quadratic problem is replaced by a Linear Sum Assignment

roblem (LSAP) of their vertices, so that the cost of assigning two

ertices is defined as the GED between the star subgraphs centered

t these vertices. Richer graph structures were then explored to

apture less local dissimilarities [7,10,28] . Given a (n + m) × (m + n)

xtended cost matrix constructed from these dissimilarities, the

SAP is solved in these works by Kuhn–Munkres version of the

ungarian algorithm [14,20] in O((n + m) 3) worst-case time com-

lexity, where n and m denote the order of the graphs. When costs

ulfill triangular inequality, there is no removal (n ≤ m) or no in-

ertion (n ≥ m), so the size of the LSAP can be reduced and solved

n O(max { n, m } 3) time complexity with the same Hungarian algo-

ithm [26,27] . The LSAP is also equivalent to a binary linear pro-

ram (BLP) with (n + 1)(m + 1) variables, which can be solved in

(min (n, m) 2 max (n, m)) by an adaption of Lawler version [15] of

he Hungarian algorithm proposed in [5] to this BLP. We denote

y LSAPE , the bipartite GED computed using this last algorithm on

 cost matrix defined from random walks of length 3 initiated on

ach node [10] . LSAPE was one of the inspected methods in GDC.

Better approximations of the solution to QAP are obtained by

terative optimization methods based on relaxation, linear approx-

mation and gradient descent [16,19] , as experimented in [4] for

he GED with the extended graphs. In particular, the integer pro-

ected fixed point (IPFP) algorithm proposed in [16] provides an el-

gant extension of the bipartite GED by refining the initial solution

rovided by the LSAP. The algorithm iterates a projection to the

losest binary solution and a line search to find the next relaxed

ontinuous solution, until a fixed point is reached. Each projection

tep consists in solving a LSAP, representing a 1st-order approxi-

ation of the GED. In the contest, IPFP algorithm was tested for

pproximating the binary quadratic program reformulation of the

ED as proposed in [6] . This reformulation, named QAPE in this

aper, considers (n + 1)(m + 1) variables and IPFP refines the solu-

ion obtained by LSAPE . At each iteration, the projection becomes

 BLP, which is also computed in O(min (n, m) 2 max (n, m)) by the

ungarian algorithm proposed in [5] . Note that due to a limitation

f LSAPE, QAPE is restricted to integer cost matrices.

inary linear programming based approaches. A second family of al-

orithms consists in using BLP for computing the GED.

In [13] , a BLP formulation of the GED has been proposed. This

pproach searches for the permutation matrix which minimizes

he cost of transforming one graph into another graph. The cri-

erion to be minimized takes into account costs for matching ver-

ices, but the formulation does not process graphs whose edges are

ttributed.

Recently, BLP algorithms have been proposed to compute the

ED between attributed graphs (on both vertices and edges). These

lgorithms were implemented using CPLEX which is one of the

est mathematical programming solvers. F2 in [17] , is an exact GED

pproach, which is an extension of an earlier work proposed by

he authors in [18] . F2 was among the methods that participated

n GDC. In this model, two sets of binary variables were associ-

ted to vertex-to-vertex matching and edge-to-edge matching, re-

pectively. Two types of constraints were introduced to represent

he GED problem. The mapping constraints ensure that each ver-

ex of G 1 is either mapped to exactly one vertex of G 2 or deleted

rom G 1 and that each vertex of G 2 is either mapped to exactly one

ertex of G or inserted in G . Second, the graph topology in the
1 1
apping of vertices and edges was preserved thanks to topological

onstraints. A cost is associated to each mapping. The GED is then

he minimum sum of mapping costs among the feasible solutions

hat respect the constraints of the BLP formulation.

In GDC, a parallel extension of F2 was put forward. This algo-

ithm, named F24Threads , is the same as F2 except that CPLEX was

et to run in a parallel manner with 4 threads.

The continuous relaxation of an Integer Linear Program (ILP) is

 Linear Program (LP) where the constraints are unmodified but

he variables are continuous. A lower bound of F2 , named F2LP ,

as proposed in [17] . The time complexity could be reached in

 (k 3.5) with the interior point method where k is the number of

ariables in the model. In GDC, an upper bound was derived from

2LP by rounding the continuous variables to the nearest integer.

he obtained solution may not be a feasible solution. A feasibil-

ty pump heuristic [11] is performed to generate a feasible solu-

ion. The basic feasibility pump procedure defines a (linear) dis-

ance function �(x, ̃ x) between two solutions x and ˜ x . The feasi-

ility pump procedure solves an integer linear program with an

uxiliary objective function �(x, ̃ x) where ˜ x is a nearest-integer

ounding from the optimal solution of the continuous relaxation.

he feasibility pump procedure tries to generate a relaxed opti-

um which lies as close as possible to Ìâ ˜ x . This algorithm, also

alled F2LP , was part of GDC.

ranch-and-bound based approaches. The last family that partici-

ated in GDC is the branch-and-bound one. The A

∗-based algo-

ithm is considered as a foundation work for solving the GED [25] .

he computations are achieved by means of an ordered tree that

s constructed dynamically at run time by iteratively creating suc-

essor vertices. Only leaf vertices correspond to complete matching

perations. To overcome the memory problem of A

∗, a depth-first

lgorithm, named DF , was proposed in [2] . DF , which also among

he methods in GDC, contains two main steps: The preprocessing

nd branch-and-bound steps. In the preprocessing step, a first up-

er bound is calculated using the bipartite graph matching algo-

ithm [24] . Moreover, the vertices and edges cost matrices are con-

tructed to speed up the algorithm by getting rid of re-calculating

he assigned costs when matching the vertices and edges of the

wo compared graphs. Once the preprocessing step finishes, the

xploration of the search space starts in a depth-first way.

The search tree is pruned thanks to a heuristic which estimates

he future cost by substituting each of the n vertices of G 1 with

ny of the m vertices of G 2 . To obtain a lower bound of the exact

dit cost, the costs of the min (n, m) least expensive vertex substitu-

ions are accumulated. To get rid of solving the minimization prob-

em, the substitution costs are set to zero. Thus, any of the selected

ubstitutions is always cheaper than a deletion or an insertion op-

ration. However, the costs of max (0 , n − m) vertex deletions and

ax (0 , m − n) vertex insertions are accumulated. The unprocessed

dges of both graphs are handled independently from the vertices.

In GDC, an upper bound, called DFUB , was derived from DF.

FUB has the two main steps of DF . However, the branch-and-

ound step differs from DF . When a first complete solution is

chieved, the algorithm terminates and outputs this solution as a

nal one.

A parallel version of DF , named PDFS in the contest, was pro-

osed in [3] . A best-first strategy is performed before starting

o decompose the search tree into sub-trees. Load balancing oc-

urs when a thread finishes all its assigned problems (i.e., partial

atching). PDFS terminates when all threads finish the exploration

f their assigned problems. Each thread runs the depth-first algo-

ithm on a part of the problem to explore the solution space in

arallel and thus to discard misleading partial solutions.

A modification of A

∗, called beam search (BS), was proposed in

21] . The purpose of BS , is to prune the search tree while searching

98 Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103

Table 1

Characteristics of symbolic and numeric datasets.

Datasets Reference # graphs avg. (max)

#nodes

Alkane [12] 150 8.9 (10)

Acyclic 185 8.2 (11)

PAH 94 20.7 (28)

MAO 68 18.4 (27)

CMU [29] 111 30 (30)

Table 2

Cost parameters for symbolic datasets.

Vertices Edges

c s c d c i c s c d c i

Setting 1 2 4 4 1 1 1

Setting 2 2 4 4 1 2 2

Setting 3 6 2 2 3 1 1

f

c

w

t

M

d

a

1

M

1

o

T

m

w

c

c

w

o

3

o

t

i

i

3

u

s

r

d

r

d

t

w

G

d

n

p

t

G

d

a

e

a
for a satisfactory solution. Instead of exploring all the search space,

at each iteration, the x most promising partial solutions are kept in

the set of promising candidates. In this contest, x was set to 100.

3. Protocol and datasets

Our evaluation is conducted on 4 Quad-Core AMD Opteron pro-

cessor 8350, cadenced at 2.0GHz together with 16GB memory. The

maximum number of threads was limited to 4 (i.e., for F24threads

and PDFS). The time constraint used in GDC was fixed to 30 s. That

is, the methods that needed more than 30 s were stopped, and the

best answer found so far was outputted. Note that F2, F24threads,

DF and PDFS are exact algorithms without time constraints.

3.1. Datasets and cost functions

Several datasets composed of graphs with symbolic and nu-

meric attributes were used in the experiments. Table 1 synthesizes

the characteristics of the first 5 datasets.

The first 4 datasets are composed of chemical compounds.

Alkane and PAH datasets correspond to molecules only composed

of carbons and may thus be considered as unlabeled graphs. On

the other hand, MAO and Acyclic are composed of various types

of atoms (carbons, oxygen, etc.). For these four datasets, all graph

pairwise comparisons were computed. The cost of editing an ele-

ment (a vertex or an edge) is given by:

c(a, b) = δ f (a)= f (b) c s , c(a, ε) = c d , c(ε, b) = c i (1)

where a and b are elements, f (a) is the label of vertex a or the

bound type of edge a . Note that δr = 1 if r is true or 0 else, c s is the

cost of substituting elements with a same attribute, and c d and c i
denote respectively the cost of deleting and inserting an element.

Three different combinations of these parameters have been tested

(see Table 2): Vertex insertion/deletion more expensive than vertex

substitution (setting 1), vertex/edge insertion/deletion more expen-

sive than vertex/edge substitution (setting 2), and vertex/edge in-

sertion/deletion cheaper than node/vertex substitution (setting 3).

These three settings aim at favoring either substitution or dele-

tion/insertion edit operations and may exhibit if the performances

of a same algorithm are constant upon different cases.

CMU dataset was made up of 660 graph pairs which were con-

structed from 111 images of a toy house captured from 9 differ-

ent viewpoints. Each house was represented by 30 unattributed

vertices while edges were attributed by the euclidean distance

(integer-valued) between them. Vertices substitutions were fixed

to a zero cost and to + ∞ for deletions and insertions, hence for-

bidding them. Edit operations on edges were penalized by the cost
unction:

(e i , e j) = 0 . 5 | d(e i) − d(e j) | , c(e, ε) = c(ε, e) = 0 . 5 d(e) (2)

here d (e) is the distance associated to edge e .

To analyze the behavior of the submitted approaches when

he number of vertices increases, the well-known Mutagenicity (or

UTA) and GREC datasets [23] were considered but divided into

isjoint subsets containing graphs with a same number of vertices,

s proposed in [1] . The subsets are composed of graphs with 5,

0, 15 and 20 vertices, for GREC, and 10, 20, ..., 70 vertices for

UTA. Each subset is composed of 10 graphs, hence leading to

00 pairwise comparisons for each one. Since MUTA is composed

f chemical compounds, we used cost functions defined by Eq. (1) .

he graphs of GREC have several attributes (both symbolic and nu-

erical) defined on vertices and edges. The cost functions of GREC

ere defined as follows:

(e i , e j) =

⎧ ⎪ ⎨

⎪ ⎩

0 , if f (e i) = f (e j) = 1 and T (e i) = T (e j)
15 , if f (e i) = f (e j) = 1 and T (e i) � = T (e j)
0 , if f (e i) = f (e j) = 2

7 . 5 , otherwise

(v i , v j) =

{
0 . 5 d euc (pos (v i) , pos (v j)) , if T (v i) = T (v j) = 1

90 , otherwise

(3)

c(e, ε) = c(ε, e) = 7 . 5 f (e)

c(v , ε) = c(ε, v) = 45

here f is the frequency associated to edge e. T refers to the type

f edges/vertices and pos is the x, y position of vertex v .

.2. Performance evaluation metrics

Let S be a graph dataset and let M denote the set of GED meth-

ds listed in Section 2 . Given a method m ∈ M , we computed all

he pairwise comparisons d (G i , G j)
m (except on CMU as explained

n Section 3.1), where d (G i , G j)
m is the edit distance computed us-

ng method m on the graph pair (G i , G j) ∈ S 2 under a time limit of

0 s.

A projection on a two-dimensional space (R

2) was achieved by

sing time-score (Eq. (8)) and deviation-score (Eq. (7) which mea-

ure performance in terms of computational time and accuracy,

espectively. Note that both criteria must be minimized. Given a

ataset, mean deviation and mean computational time were de-

ived as follows:

ev
m

S =

1

|S| × |S|
|S| ∑

i =1

|S| ∑

j=1

dev (G i , G j)
m ∀ m ∈ M (4)

ime
m

S =

1

|S| × |S|
|S| ∑

i =1

|S| ∑

j=1

time (G i , G j)
m ∀ m ∈ M (5)

here time (G i , G j)
m is the run time required by m to compute d (G i ,

 j)
m . The deviation dev (G i , G j)

m measures the distance between

 (G i , G j)
m and the best known solution R G i ,G j (either optimal or

ot). Note that for a given pair of graphs G i and G j , the distance

rovided in the ground truth is considered as R G i ,G j if it is either

hat optimal distance or if it is lower than all the distances d (G i ,

 j)
m ∀ m ∈ M . In the case where a method m obtained a lower

 (G i , G j)
m than the one in the ground truth, d (G i , G j)

m is considered

s R G i ,G j . Moreover, since we compute graph edit distance from an

dit path encoded as a mapping, the approximation computed by

 method is always an overestimation if it is not the exact graph

Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103 99

Table 3

Methods included in GDC.

Acronym Reference Details

BS-100 [21] Beam-search of size 100

LSAPE [5] Linear Sum Assignment Problem with Edition

QAPE [6] Quadratic Assignment Problem with Edition

F2 [17] Exact binary linear programming formulation

F24threads This paper Parallel version of F 2

F2LP This paper Upper bound of F 2

DF [2] Depth-first algorithm

DFUB This paper Upper bound of DF

PDFS [3] Parallel version of DF

e

l

d

t

d

t

w

m

a

h

a

o

d

4

t

G

v

t

4

i

w

(

r

r

o

c

t

d

e

a

c

w

f

s

i

s

p

u

s

s

t

a

O

t

t

i

y

s

2

t

c

U

u

F

t

l

v

o

a

i

1

t

t

a

a

p

t

F

o

m

n

Q

h

Q

F

e

i

a

o

P

f

m

F

p

p

4

Q

i

a

t

(

h

l
dit distance. Therefore, the best approximation is defined as the

owest one. Deviation is defined as follows:

ev (G i , G j)
m =

d(G i , G j)
m − R G i ,G j

R G i ,G j

, ∀ (i, j) ∈ � 1 , |S| � 2 (6)

To obtain comparable results between databases, mean devia-

ions and times were normalized:

eviation_score
m =

1

subsets

∑

S∈ subsets

dev
m

S
max_dev S

(7)

ime_score
m =

1

subsets

∑

S∈ subsets

time
m

S
max_time S

(8)

here max _ de v S and max _ time S denote respectively the maximal

ean deviation and the maximal mean execution time obtained

mong all methods on dataset S .

The computational time, measured in seconds, includes all in-

erited costs computations and graphs parsing. We also count if

n exact edit distance has been computed by a given method m

n each graph pair. This metric is obviously only measured on

atasets which exact graph edit distance has been computed.

. Results and discussion

In this section, we present and analyze the results obtained by

he submitted methods on all datasets. Table 3 summarizes the

ED methods that were included in GDC.

For the sake of clarity, we synthesize our different conclusions

ia figures. For exhaustive and numerical results, we refer the in-

erested reader to the contest website: http://gdc2016.greyc.fr .

.1. Symbolic datasets

We ran all the methods on MUTA using the 3 Settings described

n Section 3.1 . Since the results using Settings 1 and 2 were similar,

e only report the results obtained using Settings 2 and 3.

Fig. 1 (a) sums up the running time (x-axis) and deviation scores

y-axis) on MUTA. This plot allows to see the trade-off between the

unning time required to compute an edit distance and the accu-

acy of this approximation. One can see that the average deviation

f F24threads was the lowest (using Settings 2 and 3), which thus

orresponds to the best method in terms of accuracy. Considering

he trade-off between speed and quality, QAPE was the best candi-

ate.

Fig. 1 (b) shows the percentage of computations of exact graph

dit distance (with or without optimality proof) using Settings 2

nd 3. One can see that the number of optimal solutions found de-

reases as the size of graphs increases. However, F2 and F24threads

ere able to find more optimal solutions than the other methods

or a given size of graphs. The minimum number of found optimal

olutions was 10 which corresponds to matching each graph with

tself which is an easier problem.
Fig. 1 (c) depicts the average running time obtained on MUTA

ubsets using Settings 2 and 3. We can note that the BLP ap-

roaches (i.e., F2, F24threads and F2LP) required more time when

sing Setting 2 than using Setting 3. This phenomenon, not ob-

erved on other methods, was induced by the topological con-

traints of the F2 -based methods which take into account substi-

utions and not deletions and insertions. Thus, the more insertions

nd deletions are required, the easier the constraints are respected.

ne could also notice that on Muta-60 and Muta-70, the running

ime of F2 and F24thread exceeded 30 s. This was due to the fact

hat the chosen mathematical solver cannot take the parsing phase

nto account when configuring the time constraint. Thus, to go be-

ond this problem, F2 ’s participants decided to limit the time con-

traint of these two methods to 28 s (instead of 30 s), leaving only

 s to parse graphs. However, when graphs exceeded 50 vertices,

he parsing time needed more than 2 s to compute which induced

omputational times exceeding the time limit.

Fig. 1 (d) depicts the average deviation according to graph size.

sing Setting 2, one can see that F24threads was the best method

p to 40 vertices. On MUTA-50, 60 and 70, QAPE outperformed

24threads since the latter was unable to output satisfactory solu-

ions. On the other hand, using Setting 3, F24threads obtained the

owest estimations of the GED even on graphs whose number of

ertices was greater than 40. The algorithm that obtained the sec-

nd best estimations was QAPE .

Concerning the 4 chemical datasets (i.e., Acyclic, Alkane, MAO

nd PAH), Settings 1, 2 and 3 did not significantly alter the behav-

or of the methods, thus in this paper, only the results of Setting

 are reported. Fig. 2 shows the trade-off between deviation and

ime scores on the 4 chemical datasets. Similarly to MUTA subsets,

he more accurate approximations were obtained by F24threads

nd F2 . For a compromise between time and accuracy, QAPE was

 good candidate.

PAH represented the most challenging dataset since it is com-

osed of large unlabeled graphs. From Fig. 2 (d), we can observe

he difference in terms of computational time between F24threads,

2, DF and PDFS . Note that, in this case, F24threads took advantage

f parallelism, which allowed this method to compute exact GEDs

ore often than the other methods. On this dataset, one can also

otice a large difference in computation time between BS, LSAPE,

APE , and DFUB methods on the one hand and F2 , on the other

and. This point might be explained by the fact that BS, LSAPE,

APE and DFUB aim at finding an approximate solution while F2,

24thread, DF and PDFS search for an optimal one. The important

xecution time needed by PDFS was due to the integrated mislead-

ng heuristic (Section 2) which was unable to prune the search tree

s fast as possible. However, on simpler datasets, executions time

f most methods was below 1 s.

On Alkane, Acyclic and MAO, composed of smaller graphs than

AH, F2 and F24threads were able to compute an optimal solution

or any pair of graphs within 30 s (Fig. 2). Note that DF and PDFS

ethods were also very close to F2 and were faster than F2 and

24threads on Alkane. Considering PAH, F24threads obtained ap-

roximately 84%% of optimal solutions, followed by F2 with ap-

roximately 62%% of optimal solutions.

.2. Numeric datasets

Regarding the numeric datasets (i.e. CMU and GREC), LSAPE and

APE were not integrated in this part of GDC since their current

mplementation could only match graphs the attributes of which

re symbolic. Fig. 3 (a) shows the trade-off between computation

ime and deviation on GREC. As one could see, all the methods

except DFUB) had a small deviation. GREC is composed of graphs

aving at most 20 vertices, which thus constitutes a tractable prob-

em for all methods. Note that F2 and F24threads always found the

http://gdc2016.greyc.fr

100 Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103

Fig. 1. Scores obtained on MUTA Datasets.

Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103 101

Fig. 2. Speed versus deviation scores on chemical datasets using Setting 1.

Fig. 3. Average deviation-running time scores.

o

(

v

r

O

i

a

p

a

d

4

F

a

b

l

o

2

ptimal solutions. On the other hand, CMU was more challenging

see Fig. 3 (d)). Indeed, most of the methods obtained a high de-

iation on this database, except for F24threads which had the best

esults in a comparable computation time with the other methods.

nly DFUB was significantly faster but at a cost of accuracy. Even

f F24threads ’s deviation score was 0%%, it was only able to find

pproximately 51%% of optimal solutions. Such an observation em-

hasizes the complexity of the GED problems on this dataset. As

 conclusion, F24threads represented a good compromise between

eviation and running time on both CMU and GREC.
F
.3. General conclusions

As a conclusion of GDC, among the exact methods (i.e., F2,

24threads, DF and PDFS), which output exact solutions when they

re not restricted by time constraints, F24threads constitutes the

est alternative. Indeed, this method always obtained the exact so-

ution of GED on small graphs and still obtains a good percentage

f exact edit distances when dealing with graphs having more than

0 vertices.

On the other hand, approximate GED methods (i.e. LSAPE, QAPE,

2LP, DFUB and BS) aim at providing a good approximation in a

102 Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103

v

m

t

m

s

O

p

i

a

S

f

R

[

[
reduced computational time. Among these methods, QAPE usually

obtained the best GED approximation within a reasonable compu-

tational time. Moreover, QAPE may find the optimal solution for

many pairs of graphs. However, it cannot give any guarantee of the

optimality of its result.

5. Challenges in graph edit distance

In this section, we present and discuss perspectives of evalu-

ated methods and GED challenges upcoming in the near future.

Regarding the 3 inspected GED categories, the branch-and-bound

based algorithms are highly dependent on the lower bound. These

algorithms could be improved by proposing other promising lower

bounds with the help of machine learning techniques. On the other

hand, currently, the implementation of the assignment-based algo-

rithms cannot handle graphs with numeric attributes.

The BLP-based approaches were solved by off-the-shelf mathe-

matical solvers for which the exploration of the solution space is

not mastered by the user. It might be interesting to explore how

the solving could benefit from the knowledge brought by approx-

imate methods that can be computed in a small time. On the one

hand, the early injection of upper and lower bounds provided by

approximate methods could help to drastically prune the tree of

solutions. On the other hand, even if they are not optimal, the as-

signments provided by approximate methods could be good start

points in the search for an optimal solution.

Both exact and approximate GED approaches have common

challenges, particularly in reducing computational time and con-

sequently matching larger graphs. Considering approximate ap-

proaches, one direction may be to keep a nearly constant approx-

imation error to obtain a reasonable confidence interval on the

computed edit distance. Note that BLP-based approaches reached

the highest accuracy on almost all datasets in our experiments. On

this basis, it would be interesting to use other Operations Research

techniques to solve GED. For instance, heuristics based on mathe-

matical programming could be investigated to break down a given

problem into a sequence of subproblems solved optimally.

Regarding GDC, the time constraint was arbitrary fixed to 30 s.

One could relax or increase this time constraint to explore how

methods are acting in different conditions, or, more precisely,

study the deviation as a function of time. For instance, such a

study will be very interesting for BLP-based methods to find a good

trade-off according to accuracy vs. time constraints of users.

Generally, in GED, there is a lack of challenging and real-world

datasets. As demonstrated in this paper, GED computation on GREC

is easily solved by most of tested methods. On the other hand,

MUTA, PAH and CMU were more challenging. It is of great inter-

est to have more various types of datasets (e.g., big, dense and ir-

regular graphs) that are dedicated to real-world applications (e.g.,

documents, social networks and object tracking). Moreover, in GDC,

the ground truth is not always provided. It would be better to have

datasets with their ground truth so as to be compare computed

approximations to exact graph edit distance and not the best ap-

proximation.

Based on the aforementioned challenges, one could see that

there exist different ways to improve GED computation. However,

beyond that, one should take into account the reason why we need

to compute GED (e.g., classification, matching or clustering prob-

lems). In this paper, we focused on just one challenge of GDC

(i.e. at the matching level) and not on its use to resolve a given

problem. A future contest should focus on the evaluation of GED

approximations to classification or clustering problems. Moreover,

each kind of problems could raise the issue of learning cost func-

tions. Since GED is a minimization problem, the selected functions

as well as the parameter values are not necessarily adapted with

the user’s provided solution. In other words, the user’s vertex-to-
ertex matching may not be the minimum solution found by a GED

ethod. Recently, Cortés and Serratosa [9] have proposed to learn

he parameters of cost functions based on the vertex-to-vertex

atching provided by users. This approach is interesting since it

hows the applicability of GED methods in real-world applications.

n this basis, one could add visualizing the matching results as a

erformance evaluation metric to judge whether or not the match-

ng results are relevant after taking the users’ point of view into

ccount.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.patrec.2017.10.007 .

eferences

[1] Z. Abu-Aisheh , R. Raveaux , J. Ramel , A graph database repository and perfor-

mance evaluation metrics for graph edit distance, in: Graph-Based Represen-
tations in Pattern Recognition, 2015, pp. 138–147 .

[2] Z. Abu-Aisheh , R. Raveaux , J. Ramel , P. Martineau , An exact graph edit dis-
tance algorithm for solving pattern recognition problems, in: ICPRAM, 2015,

pp. 271–278 .
[3] Z. Abu-Aisheh , R. Raveaux , J. Ramel , P. Martineau , A Parallel Graph Edit Dis-

tance Algorithm, Technical Report hal-01476393, Univ. de Tours, 2017 .

[4] S. Bougleux , L. Brun , V. Carletti , P. Foggia , B. Gaüzère , M. Vento , Graph edit
distance as a quadratic assignment problem, Pattern Recognit. Lett. 87 (2017)

38–46 .
[5] S. Bougleux , B. Gaüzère , L. Brun , A hungarian algorithm for error-correcting

graph matching, in: IAPR-TC-15 International Workshop on Graph-Based Rep-
resentations in Pattern Recognition, in: LNCS, vol. 10310, Springer International

Publishing, 2017, pp. 118–127 .
[6] S. Bougleux , B. Gaüzère , L. Brun , Graph edit distance as a quadratic program,

in: International Conference on Pattern Recognition, 2016, pp. 1701–1706 .

[7] V. Carletti , B. Gaüzère , L. Brun , M. Vento , Approximate graph edit distance
computation combining bipartite matching and exact neighborhood substruc-

ture distance., in: Graph-Based Representations in Pattern Recognition, in:
LNCS, vol. 9069, 2015, pp. 168–177 .

[8] X. Cortés , F. Serratosa , Active-learning query strategies applied to select a
graph node given a graph labelling, in: IAPR-TC-15 International Workshop

on Graph-Based Representations in Pattern Recognition, in: LNCS, vol. 7877,

Springer Berlin Heidelberg, 2013, pp. 61–70 .
[9] X. Cortés , F. Serratosa , Learning graph matching substitution weights based on

the ground truth node correspondence, Int. J. Pattern Recognit. Artif. Intell. 30
(2) (2016) .

[10] B. Gaüzère , S. Bougleux , K. Riesen , L. Brun , Approximate graph edit distance
guided by bipartite matching of bags of walks, in: Structural, Syntactic, and

Statistical Pattern Recognition, in: LNCS, vol. 8621, 2014, pp. 73–82 .

[11] F. Glover, M. Laguna, General purpose heuristics for integer programming—part
i, J. Heuristics 2 (4) (1997) 343–358, doi: 10.10 07/BF0 0132504 .

[12] IAPR TC 15, GREYC Datasets, 2013.
[13] D. Justice , A. Hero , A binary linear programming formulation of the graph edit

distance, IEEE Trans. Pattern Anal. Mach. Intell. 28 (8) (2006) 1200–1214 .
[14] H.W. Kuhn , The hungarian method for the assignment problem, Nav. Res. Lo-

gist. 2 (1–2) (1955) 83–97 .

[15] E. Lawler , Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston, New York, 1976 .

[16] M. Leordeanu , M. Hebert , R. Sukthankar , An integer projected fixed point
method for graph matching and map inference, in: Advances in Neural Infor-

mation Processing Systems, vol. 22, 2009, pp. 1114–1122 .
[17] J. Lerouge , Z. Abu-Aisheh , R. Raveaux , P. Héroux , S. Adam , New binary linear

programming formulation to compute the graph edit distance, Pattern Recog-

nit. 72 (2017) 254–265 .
[18] J. Lerouge , Z. Abu-Aisheh , R. Raveaux , P. Héroux , S. Adam , Exact graph edit

distance computation using a binary linear program, in: Structural, Syntactic,
and Statistical Pattern Recognition, 2016, pp. 4 85–4 95 .

[19] Z.-Y. Liu , H. Qiao , GNCCP–graduated nonconvexity and concavity procedure,
IEEE Trans. Pattern Anal. Mach. Intell. 36 (6) (2014) 1258–1267 .

[20] J. Munkres , Algorithms for the assignment and transportation problems, J. Soc.

Ind. Appl. Math. 5 (1) (1957) 32–38 .
[21] M. Neuhaus , K. Riesen , H. Bunke. , Fast suboptimal algorithms for the compu-

tation of graph edit distance, in: Structural, Syntactic, and Statistical Pattern
Recognition, 2006, pp. 163–172 .

22] K. Riesen , Structural Pattern Recognition with Graph Edit Distance - Approxi-
mation Algorithms and Applications, Advances in Computer Vision and Pattern

Recognition, Springer International Publishing, 2015 .
[23] K. Riesen , H. Bunke , IAM graph database repository for graph based pattern

recognition and machine learning, in: Structural, Syntactic, and Statistical Pat-

tern Recognition, 2008, pp. 287–297 .
[24] K. Riesen , H. Bunke , Approximate graph edit distance computation by means

of bipartite graph matching, Image Vision Comput. 27 (7) (2009) 950–959 .
25] K. Riesen , S. Fankhauser , H. Bunke , Speeding up graph edit distance computa-

tion with a bipartite heuristic, Mining and Learning with Graphs, MLG, 2007 .

https://doi.org/10.1016/j.patrec.2017.10.007
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0001
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0002
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0003
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0004
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0005
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0006
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0006
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0006
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0006
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0007
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0008
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0008
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0008
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0009
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0009
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0009
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0010
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0010
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0010
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0010
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0010
https://doi.org/10.1007/BF00132504
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0012
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0012
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0012
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0013
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0013
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0014
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0014
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0015
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0015
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0015
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0015
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0011a
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0011a
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0011a
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0011a
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0011a
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0011a
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0016
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0017
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0018
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0018
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0019
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0019
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0019
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0019
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0020
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0020
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0021
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0022
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0022
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0022
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0023
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0023
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0023
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0023

Z. Abu-Aisheh et al. / Pattern Recognition Letters 100 (2017) 96–103 103

[

[

[

26] F. Serratosa , Fast computation of bipartite graph matching, Pattern Recognit.
Lett 45 (2014) 244–250 .

[27] F. Serratosa , Speeding up fast bipartite graph matching through a new cost
matrix, Int. J. Pattern Recognit. Artif. Intell. 29 (02) (2015) .
28] F. Serratosa , X. Cortés , Graph edit distance: moving from global to local struc-
ture to solve the graph-matching problem, Pattern Recognit. Lett. 65 (2015)

204–210 .
29] C.-C. Wang, CMU Dataset, 2003.

http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0024
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0024
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0025
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0025
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0026
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0026
http://refhub.elsevier.com/S0167-8655(17)30369-0/sbref0026

	Graph edit distance contest: Results and future challenges
	1 Introduction
	2 Inspected methods
	3 Protocol and datasets
	3.1 Datasets and cost functions
	3.2 Performance evaluation metrics

	4 Results and discussion
	4.1 Symbolic datasets
	4.2 Numeric datasets
	4.3 General conclusions

	5 Challenges in graph edit distance
	 Supplementary material
	 References

