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a b s t r a c t 

In word spotting literature, many approaches have considered word images as temporal signals that could 

be matched by classical Dynamic Time Warping algorithm. Consequently, DTW has been widely used as 

a on the shelf tool. However there exists many other improved versions of DTW, along with other robust 

sequence matching techniques. Very few of them have been studied extensively in the context of word 

spotting whereas it has been well explored in other application domains such as speech processing, data 

mining etc. The motivation of this paper is to investigate such area in order to extract significant and 

useful information for users of such techniques. More precisely, this paper has presented a comparative 

study of classical Dynamic Time Warping (DTW) technique and many of its improved modifications, as 

well as other sequence matching techniques in the context of word spotting, considering both theoretical 

properties as well as experimental ones. The experimental study is performed on historical documents, 

both handwritten and printed, at word or line segmentation level and with a limited or extended set of 

queries. The comparative analysis is showing that classical DTW remains a good choice when there is 

no segmentation problems for word extraction. Its constrained version (e.g. Itakura Parallelogram) seems 

better on handwritten data, as well as Hilbert transform also shows promising performances on hand- 

written and printed datasets. In case of printed data and low level features (pixel’s column based), the 

aggregation of features (e.g. Piecewise-DTW) seems also very important. Finally, when there are impor- 

tant word segmentation errors or when we are considering line segmentation level, Continuous Dynamic 

Programming (CDP) seems to be the best choice. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

The advancement of high quality document digitization has

rovided a stirring alternative to preserve and easy, hassle-free ac-

ess of ancient manuscripts for historians and researchers. To allow

earching into these mass of digitized datasets, indexation based

n Optical Character Recognition (OCR) or manual (semi-manual)

ranscriptions is applied traditionally. Nevertheless, the perfor-

ance of available OCR engines on such historical documents are

ot up-to the mark because of the writing and font style variabil-

ty, linguistics and script dependencies and poor document quality

aused by high degradation effects. Even when learning is possible,
∗ Corresponding author. 

E-mail addresses: tanmoy.mondal@univ-lr.fr , tanmoy.besu@gmail.com (T. Mon- 

al), nicolas.ragot@univ-tours.fr (N. Ragot), jean-yves.ramel@univ-tours.fr (J.-y. 

amel), umapada@isical.ac.in (U. Pal). 
1 The Matlab implementation of this article is available here: https://github.com/ 

anmayGIT/ICDAR- 2015- DTW . 
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his one becomes a burdensome process due to the need of ground

ruth. Whereas, the process of manual or semi-automatic transcrip-

ion of handwritten or printed documents is a tedious and costly

ob. For these reasons, word-spotting technique appears to be an

nteresting alternative and research on this topic has been empha-

ized. This technique can be defined as the “localization of words of

nterest in the dataset without actually interpreting the content” and

t allows to index or search inside a document using queries. 

For spotting words in handwritten manuscripts and historical

rinted document images, word images can be thought as 2D sig-

als, that can be matched by sequence matching algorithms like

TW [14,17,32] . In other application domains, DTW’s variants have

een intensively evaluated to demonstrate their interest [7,34] , but

hey have not been clearly studied and compared in the case

f word spotting. In this paper, we propose a detailed compara-

ive study of DTW and it’s variants for word spotting. This study

xtends the one performed in [27] by including more sequence

atching algorithms. Some of them have never been tested in

ord spotting context whereas they have shown promising results

http://dx.doi.org/10.1016/j.patcog.2017.07.011
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Table 1 

Extracted features from the word images, considering an image with N columns and M rows. 

Feat. Nb. Feature description 

F 1 Sum of foreground pixel intensities in pixel columns (from gray scale image) 

F 2 Number of background-to-ink transitions in pixel columns 

F 3 Upper profile of sequence (top most position of ink pixels in pixel columns) 

F 4 Lower profile (bottom most position of ink pixels in pixel columns) 

F 5 Distance between upper and lower profile (in number of pixels) 

F 6 Number of foreground pixels in pixel columns 

F 7 Center of gravity (C.G.) of the column obtained from the foreground pixels 1 ≤ n ≤ N 

F 7(n ) = 

{
[ 1 ρ

∑ M 
m =1 m i f w b (m, n ) = 1] ; | ρ � = 0 ;ρ = No. of f oreground pixels at n th column ;

t Obtaine d by interpolation; | ρ = 0 

F 8 Transition at C.G. obtained from F 7 

F 8(n ) = 

⎧ ⎨ 

⎩ 

1 w b (F 7(n ) , n ) = 0 ; and w b (F 7(n − 1) , n ) = 1 or 

w b (F 7(n ) , n ) = 1 ; w b (F 7(n − 1) , n ) = 0 

t Obtaine d by interpolation 
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2 http://www.fki.inf.unibe.ch/databases/iam- historical- document- database/ 

washington-database . 
3 http://cesr.univ-tours.fr/ . 
4 See Bibliothèques Virtuelles Humanistes Project: http://www.bvh.univtours.fr/ 

presentationen.asp . 
in other domains. Also, more experimental datasets are used (six in

total), including both handwritten and printed document images. 

The remainder of this paper is organized as follows. The

datasets used for experiments as well as the word spotting frame-

work are detailed in Section 2 . The baseline of DTW approach

and various other dynamic programming (DP) paths, warping con-

straints are studied in Section 3 . The specific techniques to reduce

the quadratic time complexity of DTW algorithm are next evalu-

ated in Section 4 . Behavior of several other approaches designed for

improving the quality of DTW are studied in Section 5 . Other dy-

namic programming based sequence matching approaches, which

has shown better performance than classical DTW in several other

domains e.g. shape matching, time series signal matching etc. are

experimented in Section 7 . Finally, a summary of results with dis-

cussion and future work is presented in Section 8 . 

2. Descriptions of datasets and experimental protocols 

2.1. Feature extraction 

For all experiments and datasets used, the comparison between

a query (word image) and a target (word image or text line(piece

of) image) is done by transforming text images into a vector se-

quence using classical features; such as column based features

(please see [28] ) or Slit Style HOG features [36] . 

Column-based features : For an image with a width of N pix-

els, 8 statistical features, F 1 , F 2 , . . . , F 8 ( Table 1 ) are computed from

left to right on each pixel columns. The features F 1 − F 6 have been

used earlier in the literature [25,9,33,8] . The feature F 7 corresponds

to the center of gravity of the foreground pixels inside a column.

The equation in Table 1 , w b denotes the binarized version of the

word image, m represents the row’s coordinate and n is the col-

umn’s coordinate. For columns that has no foreground pixels, F 7

is calculated by nearest neighbor interpolation with the help of

neighboring columns, having foreground pixels. F 8, which is cal-

culated by using location of the center of gravity (obtained from

F 7) is the number of transitions from foreground to background (1

to 0) or from background to foreground (0 to 1) at these calculated

centroids. 

Slit style HOG (SSHOG) based features : For calculating SSHOG

features (refer to [36] ), a fixed sized window is slided over the im-

age in a horizontal direction to extract the HOG features from each

slit. 

2.2. Datasets 

The description of the 6 datasets used and corresponding fea-

tures used are mentioned below. 
Dataset-1 (GW-15) : This dataset is the handwritten manuscript

f George Washington(GW) 2 , consisting of 20 pages of letters, or-

ers, and instructions of George Washington from 1755 century. The

uality of scanned pages, at 200 dpi, varied from clean to difficult

o read by human and the pages originates from large collection,

ritten not only by George Washington but also by some of his as-

ociates. This experimental dataset is created from the complete

et, by considering 10 better quality pages among the 20. Here we

onsider 15 query images, used in [22,36] . The statistics related to

he 15 queries are mentioned in Table 2 . This dataset is analyzed

y using column-based features. 

Dataset-2 (CESR-10) : This is a machine printed histori-

al dataset coming from the resources of the Centre d’Études

upérieures de la Renaissance (CESR) 3 , through the BVH (Bib-

iothèques Virtuelles Humanities 4 ) project. The languages in the

ooks are Latin or French. All the pages are scanned with a reso-

ution of 312 × 312 and saved in grey scale format. Since word seg-

entation is difficult on these images, pseudo words (i.e. words,

iece of words or piece of lines) were extracted with Horizontal

un Length Smoothing Algorithm (HRLSA). Moreover, there might be

ore variations in the spelling of words here than on Dataset-

W-15 since French language from this Renaissance period had

ome alteration. In this dataset, we selected 10 queries and the

ages, where the query (or one of its direct derivative) appears

see Table 2 ) for testing. Column-based features are used here too

or analyzing this dataset. 

Dataset-3 (GW-HOG) : This dataset is also created from GW

anuscripts by using same 15 queries but instead of segmented

ords, we consider properly segmented lines and HOG features.

lease note that all the data, corresponding to feature values and

round truth (GT) are provided by the author of [36] . 

Dataset-4 (Japanese-HOG) : It is a historical Japanese handwrit-

en script having 1576 segmented lines and 4 query words [36] .

he segmented lines, HOG features and GT are provided by the au-

hor of [36] . 

Dataset-5 (GW-90) : This dataset is also created from GW

ataset. It consists of 4860 segmented words, extracted from 20

ages. To choose the queries, we grouped all the same words (from

round truth) inside individual clusters. A total of 1211 clusters are

reated, representing 1211 unique words (please note that, we ig-

ored ”,” ”-” ”.” for clustering the words). Then by keeping clus-

ers corresponding to words with more than 3 characters and with

t least 10 representatives gives 45 clusters. Then, one query im-

ge was randomly chosen from each of the clusters. This whole

http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/washington-database
http://cesr.univ-tours.fr/
http://www.bvh.univtours.fr/presentationen.asp
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Table 2 

Statistics of all queries of CESR and GW datasets. 

p  

q  

b

 

d  

t  

w  

s  

i  

p  

A

2

 

w  

m  

s  

t

 

s  

i  

w  

w

 

h  

o  

o  

b  

o  

p

w  

e  

p  

b  

w  

w  

o

 

p  

t  

c  

c  

v  

a  

b  

3

 

t  

L  

y  

s  

c  

D  

s  

m  

k  

r  

i  

i  

w

 

 

 

 

 

 

rocess was repeated for another time. So, a total of 45 × 2 = 90

uery images were selected and all word images were described

y column-based features. 

Dataset-6 (Bentham) : This dataset [10] consists of a series of

ocuments from the Bentham collection, prepared in the tranScrip-

orium project 5 . The Bentham dataset mainly includes manuscripts

ritten by Jeremy Bentham (1748-1832) himself over a period of

ixty years, as well as fair copies written by Bentham’s secretar-

al staff. Word level GT, 95 queries and 3234 segmented words are

rovided with the dataset, which has the resolution of 300 dpi.

gain, column-based features are used for the analysis. 

.3. Experimental protocol 

Classical word spotting framework is used for experiments

hich is broadly described in our earlier published work [28] . Only

atching techniques are changed to evaluate performances on

ome specific datasets by differing the features from one dataset

o another. 

Before performing matching, irrelevant word images (with re-

pect to the query size) are pruned by using simple properties of

mages for GW-90 and Bentham dataset. Fine tuning of threshold

as avoided; instead single, primitive and simple threshold values

ere used. The following constraints was used for pruning: 

1 

2 

≥ query aspect ratio 

target aspect ratio 
≥ 2 

(1) 

1 

2 

≥ query area 

target area 
≥ 2 (2) 

1 

2 

≥ K of query 

K of target 
≥ 2 

(3) 

Pruning by Eq. (1) does not provide high pruning rate. Due to

andwriting variability, words belonging to the same category can

ften have quite different lengths and areas. For this reason, two

ther pruning techniques are used. One is based on area of the

ounding boxes and the other one is a rough estimation of number

f characters in the word. The assumption on bounding box area
5 For the detail of this dataset, please see ICDAR-2015 ”Keywords spotting” com- 

etition website : http://transcriptorium.eu/ ∼icdar15kws/data.html . c
ill not work because words having similar area can have differ-

nt scale factor. Nevertheless, this constraint has good pruning ca-

abilities without much lowering the recall. The second criterion,

ased on number of characters, is an intuitive idea for pruning,

hich is unaffected by the problem of different scaling and multi

riter issues. We used a simple technique for estimating number

f characters ( K ), present in a word [5] . 

By observing and experimenting the pros and cons of each

runing criterion separately, it was observed that combining

hem together logically provide better robustness and higher re-

all. Hence all target images, satisfies condition-1 ( Eq. (1) ) and

ondition-2 ( Eq. (2) ) or condition-3 ( Eq. (3) ) are considered as rele-

ant images. Although this pruning technique is unable to retrieve

ll relevant words and misses only few of them for every query,

ut it is a good trade-off between simplicity and high pruning rate.

. Evaluation of dynamic time warping methods 

DTW [31] is a technique for measuring similarity between

wo different time series by finding their best correspondence.

et’s assume, two 2D signal : X = x 1 , x 2 , x 3 , . . . , x p and Y =
 1 , y 2 , y 3 , . . . ., y q . To align these two sequences using DTW, we con-

truct an p × q matrix, where the ( i th, j th) element of the matrix

ontains the distance ( D (x i , y j ) ) between two points x i and y j (i.e.

 (x i , y j ) = (x i − y j ) 
2 ). 6 The best warping path ( W ) between these

equences, is a contiguous (described below) set of matrix ele-

ents, which defines an optimal mapping between X and Y . The

 

th element of W is defined as w k = (i, j) k , where ( i, j ) is the cor-

esponding indices in the two sequences (i.e. the element x i of X

s mapped with y j of Y ). The optimal warping path has the follow-

ng property: W = w 1 , w 2 , ...., w K ; max (p, q ) ≤ K ≤ p + q − 1 . This

arping path maintains the following constraints: 

i) Boundary conditions: w 1 = (1 , 1) and w K = (p, q ) . The

boundary condition restrict the warping path to start and

finish in diagonally opposite corner cells of the matrix, thus

it forces to match the first elements and last elements of the

sequences together. 

ii) Continuity: The warping path is always continuous, i.e. if

w k = (m, n ) and w k −1 = (u, v ) then m − u ≤ 1 and n − v ≤ 1 .
6 In this paper, we have considered Euclidean distance, but any other distances 

an also be considered. 

http://transcriptorium.eu/~icdar15kws/data.html
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This restricts the warping path to always go through ad-

jacent cells (including diagonally adjacent cells) and thus

this constraint forces to match all elements of both the se-

quences. 

iii) Monotonicity The warping path is always monotonically

spaced in time i.e. if w k = (m, n ) and w k −1 = (u, v ) then

m − u ≥ 0 and n − v ≥ 0 . 

Many warping paths satisfies the above mentioned constraints.

However the goal here is to find the best one that minimizes the

warping cost, obtained by calculating path cost matrix ( P (i, j) ) by

using dynamic programming techniques (refer to Eqs. (4) and (5) ).

DT W (X, Y ) = P (p,q ) (4)

P (i, j) = D (i, j) + min 

{ 

P (i, j−1) 

P (i −1 , j−1) 

P (i −1 , j) 

∣∣∣∣∣
i =2 , ... .,p; j=2 , ... ,q 

P (1 , 1) = D (1 , 1) ;P (i, 1) 
1 <i ≤p 

= P (i −1 , 1) + D (i, 1) ;P (1 , j) 
1 < j≤q 

= P (1 , j−1) + D (1 , j) 

(5)

For a detailed discussion on classical DTW and some of it’s vari-

ants, which have been applied in time series matching problems,

please see [2,7] . 

3.1. DTW with varying step size condition 

The warping path formed by classical DP path of DTW, does

not have much options (only vertical, horizontal and diagonal), for

finding the optimal correspondences. To avoid such situation, in

the following section, we recall other step size conditions of dif-

ferent DP-paths that were introduced previously. 

3.1.1. Definition 

Various DP-paths have been proposed in the literature [34] .

These ones are obtained by adding some weights ( w d , w h , w v ∈ R 3 )

on the DP paths to favor vertical ( v ), horizontal ( h ) or diagonal ( d )

directions. The equally weighted case (w d , w h , w v = 1 , 1 , 1) reduces

to classical DTW and (w d , w h , w v = 2 , 1 , 1) , for example, will influ-

ence the warping path to take the horizontal and vertical direc-

tions. Then this DP-path is asymmetric. More complex directions

can also be considered (see Table 3 ). Depending on data, these dif-

ferent DP paths could help to improve performance of DTW match-

ing over classical DTW approach, but as mentioned in [34] , “the

problem of their relative superiority (asymmetric ones) has been

left unsolved”. This is why we have evaluated several of them in

our word spotting context. In Table 3 , symmetric DP paths are rep-

resented in cyan color, whereas asymmetric ones are in blue. 

3.1.2. Comparative evaluation 

The performance of these different DP paths, is investigated

through the experiments with different datasets. The results on

Dataset-GW-15 and Dataset-CESR-10 are shown in Fig. 1 . It is vis-

ible from the curves that the best performing DP-Paths are: 0-

Sym_2 (classical DTW), 0.5-Asym and 3-Sym. In general symmet-

rical DP-path are better, except for the 0.5 DP-path 

7 . Neverthe-

less, the performance of these three techniques are almost same

on both datasets, with small differences only. If we compare the

results between Dataset-GW-15 and Dataset-CESR-10, it is visible
7 Please notice that only 3-Sym has been tested here whereas 0-Sym_1 and 0- 

Sym_2 in Table 3 represents symmetric versions of 0 DP-paths. 0_Sym_2 is the clas- 

sical DTW, which equally favors all three directions but 0_Sym_1 favors vertical and 

horizontal directions over the central one. 

p  

i  
hat accuracy is significantly higher on Dataset-CESR-10. This is

ainly due to the handwritten nature of script in Dataset-GW-15. 

When these DP-paths are applied on comparatively large

atasets, i.e. Dataset-GW-90 and Dataset-Bentham, almost similar

ehavior is visible i.e. 0-Sym_2 (classical DTW), 0.5-Asym and 3-

ym have outperformed others (see Fig. 2 ). Again, symmetrical DP-

ath are better, which implies that adding weights for favoring any

irections of a DP path, seems not suitable for word spotting appli-

ations. Also, the difference in performance between Dataset-GW-

0 and Dataset-Bentham comes from the nature of scripts and the

evel of noise present in these datasets. Finally, we can also see

hat the results are clearly dependent on query used since results

ere are far less than previous ones, where only few queries were

sed. But one should also consider that among the 90 queries used

n such datasets, many could have no meaning for end-users and

ill not be considered for research. 

.2. Global constraints on warping paths 

Classical DTW is computationally expensive and the common

ay to reduce it is to impose global constraints on the admissi-

le warping path. Two such well known constraints are described

elow. 

.2.1. Definition 

Along with the improvement of computational complexity,

lobal constraints on warping path can also prevents pathologi-

al alignments. The most widely used constraints in the literature

re Sakoe-Chiba (SC) band and Itakura Parallelogram. Sakoe-Chiba

and is a global constraint. It runs along the diagonal and has a

xed (horizontal and vertical) width r . This constraint implies that

n element x i can only be aligned with an element y j such as

j ∈ [ p−r 
q −r . (q − r) , p−r 

q −r . (q + r)] ∩ [1 : p] . Sakoe-Chiba band can be ob-

ained by the following Eq. (6) : 

 − r ≤ j ≤ i + r; 1 ≤ i ≤ p; and 1 ≤ j ≤ q. (6)

he size of the SC-Band can be varied by changing the value of r .

he final performance highly depends on the chosen value for r .

nfortunately, tuning this value is data dependent and is difficult

o set. For a general constrained region, denoted by R , the con-

traint warping path p R can be computed similarly to the uncon-

trained one by setting P (x i , y j ) = ∞ for all ( i, j ) ∈ [{1: N } × {1: M }]

 R . So, in the computation of p R , only the cells that lie inside R are

valuated. Introducing constraints would definitively speedup the

rocess, for example, in the case of Sakoe Chiba band with a fixed

idth i ; i << p ; i << q , only O ( i × max ( p, q )) computations need to

e performed instead of O ( pq ) as required in classical DTW. 

The pseudo code for Itakura parallelogram is presented in

lgorithm 1 . Since, experimental evaluations have shown that the

Algorithm 1: Itakura paralleogram. 

Input : i (i ∈ [1 , . . . p]) , j( j ∈ [1 , . . . , q ]) , p( length of query ) , 

q ( length of target ) 

Output : bool ( output is 1 if $i$ and $j$ are within Itakura 

window, 0 otherwise ) 

1 bool = 0 ; 

2 if { j < 2 } × { i & i ≤ 2 × j} & { i ≥ (p − 1) − (2 × (q − j)) } & 

{ j > (q − 1) − (2 × (p − i )) } then 

3 bool = 1 ; 

4 return bool 

erformance of SC-Band and Itakura parallelogram [7] are sim-

lar, Itakura parallelogram seems a bit more interesting because
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Table 3 

Symmetric and Asymmetric DP paths with various slope constraints. The text in cyan represents symmetric equations, while the one in blue color represents 

asym metric DP paths. 

Fig. 1. a) Performance comparison of different DP paths on Dataset-GW-15. b) Performance comparison of different DP paths on Dataset-CESR-10. 
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Fig. 2. a) Performance comparison of different DP paths on Dataset-GW-90. b) Performance comparison of different DP paths on Dataset-Bentham. 

Fig. 3. The change in the shape of Itakura parallelogram with the change in length of target signal. 
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8 Please note that, we did the optimization with full dataset. Consequently, the 

results are optimal for these datasets and we could not expect to achieve the similar 

performance in real cases. 
9 The average precision ( AveP ) for retrieving one query is defined by: 

A v eP = 

κ∑ 

i =1 

(P i × rel i ) 

number of relevant words 

κ = number of considered ranks for query q 

(7) 

mAP = 

Q ∑ 

q =1 

A v eP(q ) 

Q 

Q = total number of queries 

(8) 

Precision P i is defined as the number of retrieved relevant word instances divided 

by index i , corresponding to number of words, we would like to retrieve. Recall R i 
is defined as the number of relevant word instances, retrieved at index i , divided by 

the total number of existing relevant words in the dataset. The rel i is an indicator 

function equal to 1, if the retrieved word at rank i is relevant, zero otherwise. The 

mean average precision (mAP) for a set of queries is obtained by calculating the 

mean of the average precision scores for each query. 
there are no tunable parameters. The corresponding DTW, con-

strained by Itakura parallelogram is denoted as ( DTW ) in the fol-

lowing sections. Before going into the discussion of another se-

quence matching technique, we would like to discuss here about

one important bottleneck of Itakura parallelogram . This bottleneck

has a big impact on word spotting results. By analyzing the men-

tioned pseudo code of Itakura parallelogram, it is visible that when

q ≥ 2 × p, Itakura parallelogram could not be formed. We consider

a toy example to demonstrate the problem. As shown in Fig. 3 ,

when the length of target signal is gradually increased, the shape

of Itakura parallelogram gets changed and it gradually becomes

thinner. The most appropriate shape of Itakura parallelogram can

be visible in the left most figure (see Fig. 3 a), where p = 200 and

q = 200 , i.e. when the two sequences have the same size. But

when p = 200 , q = 250 (see Fig. 3 b), p = 200 , q = 300 (see Fig. 3 c),

p = 200 , q = 350 (see Fig. 3 c) and p = 200 , q = 399 (see Fig. 3 d) re-

spectively, the change in shape of Itakura Parallelogram can be vis-

ible. When p = 200 and q = 400 , (see Fig. 3 d) i.e. when the target’s

length is double of query’s length, we could not formulate Itakura

parallelogram. This dependency of Itakura parallelogram formation

on the length of query and target signal is an obvious factor but

it has not been well mentioned in the literature [31] . Moreover,

no concrete solution is provided in the literature to overcome this

problem, except re-sampling. In the experimental section, we pro-

pose a simple technique to handle this problem for word spotting.

3.2.2. Experimental protocol and results 

To evaluate the effects of these constraint based DP paths, we

tested them on Dataset-GW-15 and Dataset-CESR-10. Fixing the

proper radius of SC-Band is a cumbersome task. It takes a lot of

manual effort s to find the best perf orming radius of SC-Band and
eeds an experimental dataset with ground truth information. We

ave experimentally set the optimized radius as 23% (30%) of the

ength of target sequence for Dataset-GW-15 (Dataset-CESR-10) 8 .

he Precision-Recall (PR) plot on Dataset-GW-15 and Dataset-CESR-

0 shows that both constraints have performed equally well even

f Itakura Band (without any parameter tuning) has slightly out-

erformed SC-Band. But the most interesting observation here is

hat for the case of Dataset-GW-15, we see that constraining the

P path significantly improves the result over classical DTW (0-

symmetric). The mAP 9 value of SC-Band and Itakura Parallelo-

ram are 0.5876 and 0.6017 for Dataset-GW-15 whereas mAP of
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Fig. 4. a) Performance comparison of DTW constraints on Dataset-GW-15. b) Performance comparison of DTW constraints on Dataset-CESR-10. a) Performance comparison 

of DTW constraints on Dataset-GW-90. b) Performance comparison of DTW constraints on Dataset-Bentham. 
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lassical DTW was 0.4576, which correspond to an increase of

5% in accuracy. But for Dataset-CESR-10, this trend cannot be ob-

erved. Indeed here, classical DTW has outperformed constrained

TW. The most probable reason of these kinds of behavior is that

or Dataset-GW-15, constraining the warping path is helpful as it

imits pathological matching, which could occur because of the na-

ure of handwriting. On Dataset-CESR-10, we must remember that

here exist segmentation problems and also some linguistic varia-

ions. Consequently, some flexibility is needed in the matching to

ompensate these variations and segmentation problems. 

Due to the complexity for choosing optimal r , and because pre-

ious results shows that SC-Band and Itakura parallelogram has

lmost similar performance, we did not use SC-Band for our ex-

eriments with Dataset-GW-90 and Dataset-Bentham. The perfor-

ance of Itakura Parallelogram on Dataset-GW-90 and Dataset-

entham, can be seen from Fig. 4 a and Fig. 4 b respectively. The

ame trend of improvement (i.e. Itakura Parallelogram has out-

erformed classical DTW on both datasets) can be visible from

hese two datasets also, which are also handwritten texts as

ataset-GW-15. 

. Speeding up DTW 

Beside the global constraints already mentioned in Section 3.2 ,

ome other techniques to reduce the time and space complexity of

TW (which is O ( mn )), can be broadly classified into following two

ategories. 

.1. Data abstraction based techniques 

An effective strategy to quickly calculate DTW distance is to

erform the alignment on coarsened versions of the sequences X

nd Y , thus reducing the lengths of the two considered sequences.

uch a strategy is also known as dimensionality reduction or data

bstraction. In the following subsections, we present several of

uch data abstraction based techniques. 

.1.1. Piecewise DTW (PDTW) 

Most time series data can be efficiently approximated by piece-

ise aggregates, so that DTW can operate on higher level of data

7] . The main idea of PDTW is to reduce the size of original sig-

al by capturing the significant representations of the full signal

hrough sub-sampling technique. Let R be the reduced dimen-

ion of transformed time series ( 1 ≤ R ≤ p). Although not neces-

ary but for convenience of explanation let’s assume R is a factor

f p . So a time series X of length p is represented by a vector of
ˆ 
 = ˆ x 1 , ̂  x 2 , ..., ̂  x R 

. The i th element of ˆ X is calculated by the equa-

ion: ˆ x i = 

R 

p 

∑ 

p 
R 

i 

j= p 
R 

(i −1)+1 
x j . Simply stated, to reduce the data from

 dimensions to R dimensions, the data is divided into R equal

ized ”frames”. The mean value of the data falling within a frame
s calculated and a vector obtained from these values become the

ata reduced representation (also called as sub-sampling). Two

pecial cases worth noting are when R = p, the transformed rep-

esentation is identical to the original representation. When R = 1 ,

he transformed representation is simply the mean of the origi-

al sequence. This transformation produces a piecewise constant

pproximation of the original sequence, this approach is named

s Piecewise Aggregate Approximation (PAA) . The compression rate

 = 

p 
R 

is denoted by the ratio of the length of original sequence to

he length of its PAA represented sequence. In choosing a value for

 , there is a classic trade-off between memory savings and fidelity.

he “best” compression rate depends on the structure of data it-

elf and the task (i.e. clustering/classification/retrieval etc). This ap-

roach of dimensionality reduction is applied on both the query

 X ) and target ( Y ) signals then DTW is applied on the reduced sig-

als i.e. on 

ˆ X and 

ˆ Y . 

.1.2. Fast-DTW 

Another data abstraction [35] based technique known as Fast-

TW works by initially finding the optimal path through a coarse

epresentation of data and then it refines it to the original data.

his is achieved by using following mentioned three stages. 

Coarsening : Generate reduced representation of the time series

hat represents the same curve as accurately as possible with less

ata points. 

Projection : From reduced representation of the data, the min-

mum distance warping path at the lower resolution is calculated

nd used as an initial guess for high resolution’s minimum dis-

ance warp path. 

Refinement : Refine the warping path, projected from lower res-

lution into the warping path of higher resolution through local

djustment of the warping path. 

Fast-DTW runs in O ( n ) time with sufficient accuracy, and thus

his approach speeds up the classical DTW method significantly

ithout much loss of accuracy. 

.1.3. Sparse DTW 

To compute DTW optimal distance between two time series,

 new space-efficient approach (Sparse DTW) is proposed in [1] .

ontrary to other techniques, which typically sacrifice optimal-

ty to attain space efficiency, this one maintain optimality, while

mproving speed. This technique dynamically exploits the exis-

ence of similarity and/or correlation between the time series. The

mount of similarity between two time series is proportional to

he amount of space required for computing DTW. The constraint

and of Sparse DTW, evolves dynamically and are much smaller

han the constraint band of conventional approaches (i.e. SC-Band

nd Itakura Parallelogram). The warping matrix is represented by

sing sparse matrices, which leads to better average space com-

lexity. Sparse DTW always yields the optimal warping path be-

ause it never have to set apriori constraints, independently of the
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data (contrary to SC-Band and Itakura Parallelogram). Thanks to

this ability, it can be easily used in conjunction with lower bound

approaches [16] . 

4.1.4. Accurate and Fast DTW (AF_ DTW) 

Classical DTW defines cumulative distance in P ( i, j) by adding

minimum distance of three adjacent elements in forward direction.

Whereas, Accurate and Fast DTW (AF_DTW) is computed by using

backward strategy [23] . AF_DTW starts from ( p, q ) to (1, 1) and el-

ements of P is calculated by taking maximum of three right adja-

cent elements subtracted by the distance D (i, j) . After forming the

path cost matrix by Eq. 9 , the warping path ( P ′ = { p 1 , p 2 , ...., p K } )
is calculated in the same way as DTW. 

P (i, j) 
i = p,p−1 , ... ., 1 ; j= q,q −1 , ... .., 1 

= max 

{ 

P (i, j+1) 

P (i +1 , j+1) 

P (i +1 , j) 

− D (i, j) 

P p+1 ,q +1 = 0 ;P p,q +1 = P p+1 ,q = −∞ 

(9)

The constructed dynamic programming based warping path also

follows three constraints : boundary condition, continuity and

monotonicity. This warping path is used to calculate the best warp-

ing path: 

AF _ DT W (X, Y ) = max 
P 

K ∑ 

k =1 

D (p K ) (10)

AF_DTW has the same accuracy and absolute distance value as

of classical DTW. In addition, the time and space complexity of

AF_DTW is reduced by adopting a strategy, inspired by Itakura and

Sakoe Chiba band. The values in P depends on the initial value at

P (p+1 ,q +1) . If P (p+1 ,q +1) is initially set to zero then all the elements

in P would be negative but if P (p+1 ,q +1) is set to a positive value

then some of the elements in P would be positive and these pos-

itive elements would be adjacent. It is shown by some toy exam-

ples in [23] that the best warping path would always appear in the

scope of these positive cells. Let’s consider, P (p+1 ,q +1) = θ as the

initial value then the best warping path would always exists in the

reduced scope with regard to the special value of θ (refer to [23] ).

So, if the algorithm is forced to find the best warping path in the

reduced scope, (i.e. only through the positive cells) the time and

space complexity could be reduced significantly. The main problem

is to choose a good value of θ so that the best warping path could

always be surrounded by the positive cells. It is shown in [23] that

a good approximation of θ is θ = 

∑ n 
k =1 (x p − y p ) 2 ; n = p = q . 

4.2. Experimental protocol and results 

We experimented the above mentioned approaches, on Dataset-

GW-15 and Dataset-CESR-10 10 . Due to the inherent architecture

of Fast-DTW, it will always speedup with some loss of accuracy.

From Fig. 5 , it can be seen that on both datasets, Fast-DTW has

slightly lower accuracy than the classical DTW but with almost

half computational time than DTW. For PDTW, the compression

rate ( c ) is set to the average character width for Dataset-CESR-10

and (2 × average stroke width ) for handwritten dataset 11 . Depend-

ing on datasets and features, PDTW has variable accuracy (refer to

Fig. 5 ). It is worse than DTW on Dataset-GW-15 whereas it is bet-

ter on Dataset-CESR-10. It might be because, in printed images of

Dataset-CESR-10, with a resolution of 300 dpi, there might be more

redundancies in the signals when it is based on low level features
10 Notice that the results of Sparse DTW and AF_DTW are not presented here be- 

cause they have not shown significant increase in computation time and space as 

claimed. 
11 Average character width is calculated by obtaining individual characters or 

glyphs by connected component labeling technique, whereas average stroke width 

for handwritten characters is calculated by the technique mentioned in [4] . 

5

 

u  

d  

b  

a  
pixels’s column based) and this could disturb the matching pro-

ess. Then, the data compression effect of PDTW could be useful

n such dataset. On the contrary, on handwritten data (see also

ig. 7 a and 7 b) and especially on GW dataset with a lower resolu-

ion of 200 dpi, PDTW seems to reduce the information, making

t less or equally efficient. But in all cases, PDTW is always faster

han classical DTW (refer to Table 6 ). 

.3. Indexing based techniques 

For large time series classification or clustering based problems,

hese kind of techniques introduce lower bounding functions for

educing the number of times, DTW must be run during the com-

lete process. Iterative Deepening DTW is one such example [6] .

t is based on a model, in which the distribution of distance ap-

roximation errors can be described and can be calculated by the

pproximation of DTW at increasingly finer levels of representa-

ions. The algorithm begins by approximating the query and target

ignals (i.e. X & Y ) by PAA approximation technique at an initial

imensionality reduction level of d 1 and given a user confidence

or user defined acceptable tolerance value for false dismissal), the

lgorithm determines whether Y (target signal) could be potential

bject for possible expansion or not (by calculating the approxi-

ate distance between reduced dimensional query and target sig-

als). If so, the algorithm computes the distance between X and Y

ith more precise approximation, using a lower dimensionality re-

uction rate d low 

( D PDTW 

( d low 

)). This process goes on until d min or

topped because no further expansion is needed/possible. At that

oint, the approximation becomes the true warping distance D DTW 

etween X and Y . This technique is suitable for dataset, containing

arge amount of time series signals of big lengths (approximatively

n thousands). In our case, signal length (features extracted from

ord images) are not very large (mostly in hundreds). So, this al-

orithm would not be much useful and that’s why we have not

ested it. 

. Improving the quality of DTW 

Here, we discuss the techniques proposed in the literature for

mproving the performance of DTW. 

.1. Derivative dynamic time warping (DDTW) 

The typical condition of classical DTW may lead to unexpected

ingularities (the alignments between a point of a series with mul-

iple points of the other series) and unintuitive alignments. To

vercome these weaknesses of DTW, DDTW transforms the orig-

nal points into higher level features, which contain the structural

nformation of the signal. This technique considers the first deriva-

ive of the signals instead of original signals ( X = x i ; 1 ≤ i ≤ p ;

 = y j ; 1 ≤ j ≤ q ) [7] , which intrinsically helps to handle the pres-

nce of noise in the signal. The first derivative of the signal is cal-

ulated as follows: 

x̄ m 

= 

(x i − x i −1 ) + ((x i +1 − x i −1 ) / 2) 

2 

; 2 ≤ i ≤ p − 1 ; 1 ≤ m ≤ p − 1 

¯
 n = 

(x j − x j−1 ) + ((x j+1 − x j−1 ) / 2) 

2 

; 2 ≤ j ≤ q − 1 ; 1 ≤ n ≤ q − 1 

(11)

.2. Piecewise Derivative Dynamic Time Warping (PDDTW) 

The Piecewise Derivative Dynamic Time Warping (PDDTW) [38] ,

ses at the same time the derivative of the signal in order to re-

uce singularities and data abstraction for capturing the benefits of

oth PDTW and DDTW together. In order to align two sequences X

nd Y , a reduced dimensional series ˆ X and 

ˆ Y are obtained first.
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Fig. 5. a) Performance comparison of Fast-DTW and PDTW in comparison with classical DTW on Dataset-GW-15. b) Performance comparison of Fast-DTW and PDTW in 

comparison with classical DTW on Dataset-CESR-10. 

Fig. 6. a) Performance comparison of different algorithms for improving the quality of DTW on Dataset-GW-15. b) Performance comparison of different algorithms for 

improving the quality of DTW on Dataset-CESR-10. 
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he length of these reduced dimensional signals are p 
φ

and 

q 
φ

,

here the term φ denotes the sampling frequency for piecewise

ggregate approximations . After that the derivative of these sam-

led signals ( ̄̂  X and 

¯̂
 Y ) are calculated in the same manner as

DTW. Then, the distance matrix ( D ( ̄̂  X, ̄̂  Y ) ) b etween two signals
¯̂
 (= 

¯̂
 x s ; 1 ≤ s ≤ ( p 

φ
− 1)) and 

¯̂
 Y (= 

¯̂
 y t ; 1 ≤ t ≤ ( q 

φ
− 1)) is calculated

n the same manner as DDTW and the remaining same steps are

ollowed to calculate the distance. 

.3. Non isometric transforms based DTW 

In [12] , the authors proposed to use mathematical functions

ther than the derivative, to transform the signals. The idea is

o choose some non-isometric transforms to calculate distances,

hich can bring some extra information. In [12] , authors have
roposed to use three popular non isometric transforms : Cosine

ransform, Sine transform and Hilbert transform, which seems to

e useful in the domain of sequence matching. For a series X =
 x i : i = 1 , 2 , ..., p} , it’s transform X̄ = { ̄x k : k = 1 , 2 , ..p} is obtained

y: 

Cosine transform Sine transform Hilbert transform 

x̄ k = 
∑ p 

i =1 
x i cos [ π

p 
(i − 1 

2 
)(k − 1)] x̄ k = 

∑ p 
i =1 

x i sin [ π
p 
(i − 1 

2 
)(k − 1)] x̄ k = 

∑ p 
i =1 

i � = k 

x i 
k −1 

.4. Value Derivative DTW 

Standard DTW uses Euclidean metric for calculating the dis-

ance between the elements of target and query sequences. This

istance is good to compare single points but not appropriate for

omparing the vector sequences. One more intelligent way [18] to

alculate the distance is by giving consideration to adjacent val-
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Fig. 7. a) Performance comparison of different algorithms for improving the quality of DTW on Dataset-GW-90. b) Performance comparison of different algorithms for 

improving the quality of DTW on Dataset-Bentham. 
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1

ues of time series, which is sensitive on the local changes among

time series elements. The derivative of query and target signals

are calculated by x̄ i = x i − x i −1 and ȳ i = y i − y i −1 . On the basis of

DDTW, this algorithm [18] propose to calculate the distance ma-

trix ( D (x i , y j ) = 

√ 

(x i − y j ) 
2 . ( ̄x i − ȳ j ) 

2 ) between these signals in a

little bit different manner (notice the different process of calcula-

tion of the D , compared to classical DTW). The first part in the

above equation gives the information about offset between points

to be compared. The second part adds the “intelligence” to the en-

tire measure. After calculating this distance matrix, the classical

DTW based DP-path formation technique is applied to obtain the

distance. 

5.5. Weighted hybrid derivative dynamic time warping (WHDDTW) 

The information from raw signal contains useful information

and smoothing the raw signal helps to stabilize the process. More-

over, the derivative provides better knowledge. For example, the

first derivative gives information on speed and the second deriva-

tive gives information on accelerations and decelerations. To han-

dle the noise sensitiveness of DDTW, an improvement is proposed

in [3] . The distance matrix ( D 

W HDDT W 

i, j 
) is computed in the follow-

ing manner, where D i, j represents distance between i th and j th el-

ements of query and target signals. Then, D̄ i, j and 

¯̄D i, j represents

the distance between 1st and 2nd order derivative of query and

target signal; D 

W HDDT W 

i, j 
= w 0 . D i, j + w 1 ̄D i, j + w 2 . ̄̄D i, j . The path cost

matrix and final distance between query and target signal is calcu-

lated as classical DTW. 

5.6. Weighted dynamic time warping (WDTW) 

The standard DTW calculates the distance of all points with

equal penalization of each point regardless of the phase difference

between a reference point and a testing point (difference between

indices). The WDTW algorithm [15] penalizes the points according

to this phase difference between target and query elements to

prevent minimum distance distortion by outliers. The key idea is

that, if the phase difference is low, smaller weight is imposed (i.e.

less penalty is imposed) because neighboring points are important,
therwise larger weight is used. While creating the p × q path cost

atrix, the distance between the two points x i and y j is calculated

y D w 

(x i , y j ) = ‖ W | i − j| (x i − y j ) ‖ p , where W | i − j| is a positive weight

alue between the two points x i and y j . The optimal distance be-

ween two sequences is defined as the minimum path over all pos-

ible paths as follows: W DT W p (X, Y ) = 

p 
√ 

P (i, j) where, P (i, j) =
 W | i − j| (x j − y j ) 

p | + min { P (i − 1 , j − 1) , P (i − 1 , j) , P (i, j − 1) } . A

echnique called as “Modified logistic weight function(MLWF)” is

sed to systematically assign weights as a function of phase

ifference between two points. The parameter g controls the

mount of penalization considering phase difference. The weight

alue W (t) = 

W max 

1+ e (−g(t−m c )) 
; where t = 1 , ...., p; p is the length of a

equence and m c is the midpoint of a sequence. W max is the de-

ired upper bound for the weight parameter and g is an empirical

onstant that controls the level of penalization for the points with

arger phase difference (from zero to infinity). 

.7. Weighted derivative dynamic time warping (WDDTW) 

The idea of weighted dynamic time warping can be extended

o variants of DTW, for example the idea of derivative dynamic

ime warping can be extended to it’s weighted version, denoted

s : W DDT W p (X i , Y j ) = W DT W p ( ̄X i , Ȳ j ) where X̄ and Ȳ are the 1 st

rder derivative of query and target signals respectively. 

.8. Local dynamic time warping (LDTW) 

DTW algorithm is modified here to perform pseudo-local align-

ent using some specific DP-paths [24] at different location of

ath cost matrix ( P ) for handling stretching and compression

f individual points in time series data. The DTW equation are

hanged in the following way. The general equation is : 

P (i, j) 
 ≤i ≤p−1 ;1 ≤ j≤q −1 

= D (i, j) + min 



T. Mondal et al. / Pattern Recognition 73 (2018) 47–64 57 

F

1

F

i

a

P

T  

t  

c  

f  

o  

e  

a

5

 

m  

o  

w  

w  

n  

e  

i  

g  

d  

p  

o  

p

5

 

a  

D  

m  

[  

r  

D  

h  

o  

t  

b  

(  

w  

s  

a

 

b  

n  

P  

b  

w  

s  

a  

d  

s  

t  

d  

v  

w  

n  

p

 

a  

s  

t  

o  

o  

n  

b  

D  

o  

t  

b  

d  

G  

9  

a

6

 

i  

t  

c  

a  

m

6

 

o  

12 Like SC-Band parameter, weighting factors ( g ) for WDTW (WDDTW) are heuris- 

tically set to 0.31 (0.26) for Dataset-GW-15 and to 0.03 (0.01) for Dataset-CESR-10, 

using same data for testing. Even with such favoring conditions (not applicable in 

real cases), the approaches are not showing promising results to generate further 

interest on such method. 
13 One explanation could be that the specific DP-path is not adapted to the printed 

nature of data combined with high resolution images and low level features. 
×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

P (i − 1 , j − 1) 

P (i − 2 , j − 1) + D (i − 1 , j) + 

1 
3 

P (i − 1 , j − 2) + D (i, j − 1) + 

1 
3 

P (i − 3 , j − 1) + D (i − 2 , j) + D (i − 1 , j) + 

2 
3 

P (i − 1 , j − 3) + D (i, j − 2) + D (i, j − 1) + 

2 
3 

(12) 

or the last column the equation is: 

P (i, j) 
 ≤i ≤p−1 ; j= q 

= min 

×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

P (i − 1 , j − 1) 

P (i − 2 , j − 1) + D (i − 1 , j) 

P (i − 1 , j − 2) + D (i, j − 1) + 

1 
3 

P (i − 3 , j − 1) + D (i − 2 , j) 

P (i − 1 , j − 3) + D (i, j − 2) + D (i, j − 1) + 

2 
3 

(13) 

or the last row the equation is: 

P (i, j) 
 = p;1 ≤ j≤q −1 

= min 

×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

P (i − 1 , j − 1) 

P (i − 2 , j − 1) + D (i − 1 , j) + 

1 
3 

P (i − 1 , j − 2) + D (i, j − 1) 

P (i − 1 , j − 3) + D (i, j − 2) 

P (i − 3 , j − 1) + D (i − 2 , j) + D (i − 1 , j) + 

2 
3 

(14) 

nd finally for the last row and last column, it is 

 (i, j) 
i = p; j= q 

= min 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

P (i − 1 , j − 1) , 
P (i − 2 , j − 1) + D (i − 1 , j) 
P (i − 1 , j − 2) + D (i, j − 1) 
P (i − 3 , j − 1) + D (i − 2 , j) 
P (i − 1 , j − 3) + D (i, j − 2) 

(15) 

o find the warping path, we must look through the last row and

he last column and find the cell that has the smallest value. That

ell is the end of a local alignment, and the warping path can be

ound by tracking back from that cell until we reach the first row

r column. Consequently, this algorithm also has the specific prop-

rty to do partial matching by discarding elements of query/target

t the begin or end of the sequences. 

.9. Continuous DTW (CDTW) 

Here, a sample point in one of the signal is allowed to be

atched with an implicit point lying between two sample points

f the other signal [29] . This method compares planar curves

hich enables it to perform matching at sub-sampling resolution,

hich can be useful when we know that sources of signals does

ot have a good acquisition of frequency. Due to the intrinsic prop-

rties of this algorithm, it is difficult to properly adapt it to word

mage matching problem. Moreover, if resolution of images are

ood and sampling for feature extraction is high enough (e.g. our

atasets) then, there is no need of such process. Finally, it might be

ossible to over-sample the signal to obtain similar behavior with-

ut the need of new algorithm [31] . Consequently, we have not im-

lemented and applied this approach for our evaluation purpose. 

.10. Experimental protocol and results 

We performed experiments with 4 datasets for evaluation of

bove mentioned algorithms. The g parameter of WDTW and WD-

TW was set by using the full dataset and by trying to opti-
ize the value of the parameter 12 . For WHDDTW, as mentioned in

3] , we used w 0 = 1 , w 1 = 2 and w 2 = 2 , which gives satisfactory

esults here. The experiments conducted on Dataset-GW-15 and

ataset-CESR-10 (refer to Fig. 6 ) are showing some interesting be-

avior. On Dataset-GW-15, Hilbert transform has outperformed all

ther techniques, whereas Local DTW is second best. Also, Hilbert

ransform and Local DTW are performing better than classical DTW

ut their accuracy remains inferior to the one of constrained DTW

SC-Band or Itakura, see Fig. 4 ). Sine transform performed quite

ell compared to other algorithms but could not outperform clas-

ical DTW. Finally, derivative and weighting based approaches are

lso unable to improve results of classical DTW. 

In the case of printed words (Dataset-CESR-10), derivative-

ased approaches are not working well if applied on the raw sig-

al (performance is less than DTW). But when combined with

DTW, the accuracy is the best one obtained on this dataset, 5%

etter than PDTW that was previously the best approach. Again,

e can explain this by the fact that if you are working with a

ignal containing some redundancies (because of high resolution

s well as printed nature), combined with local noise, then using

erivation is not working properly. After having signal compres-

ion with piecewise aggregation, derivation becomes efficient, con-

rary to what was observed on handwritten words. On this printed

ataset, Hilbert transform and Weighted Hybrid DTW are also pro-

iding some improvements in comparison with classical DTW but

eighted version are difficult to parameterize. Finally LDTW is

ot working properly which is surprising considering segmentation

roblems of this dataset. 13 

After observing interesting behavior of different aforementioned

lgorithms on Dataset-GW-15 and Dataset-CESR-10, we choose

ome of the best performing techniques to study them compara-

ively on bigger datasets (see Fig. 7 ). We experimented first, many

f them on Dataset-Bentham and then applied only the best ones

n Dataset-GW-90, which is a bigger dataset but nearly of same

ature (both are handwritten). It is visible from the results on

oth datasets that a similar behavior is observed as the one on

ataset-GW-15. More precisely, Hilbert transform is outperforming

ther techniques whereas LDTW is second best. We can also no-

ice that Hilbert transform is even outperforming Itakura Band on

oth datasets, which was previously the best algorithms on these

atasets (it was not observed on the smaller dataset i.e. Dataset-

W-15). LDTW is also better than Itakura but only on Dataset-GW-

0. As before, weighted and derivative-based approaches are not

ccurate in comparison with DTW. 

. Finding subsequence with DTW 

All of the above mentioned algorithms was designed for match-

ng all elements of the sequences. But none of these above men-

ioned techniques can handle subsequence matching, which is spe-

ially needed in word spotting especially for Dataset-GW-HOG

nd Dataset-Japanese-HOG. In this section, we speak about simple

odifications of classical DTW for subsequence matching. 

.1. DTW with correspondence window (DTW-CW) 

When a query sequence has to be matched with a subsequence

f a target sequence, the matching can be performed by using a
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sliding correspondence window, having same length as query, and

an overlapping of ( ζ ) [19] . The position of optimal subsequence

within the target sequence is obtained by calculating DTW distance

inside each window position over a query sequence. Consequently,

DTW-CW is computationally expensive and choosing the value of

ζ could also be troublesome for some applications. 

6.2. Subsequence DTW (SSDTW) 

This algorithm can find a continuous subsequence that

would optimally match the shorter query sequence [2] . Let X =
x 1 , x 2 , .....x p and Y = y 1 , y 2 , ....y q ; q � p be the query and tar-

get sequences. The goal is to find the continuous indices from a ∗

to b ∗ of Y so that Y (a ∗ : b ∗) = (y a ∗ , y a ∗+1 , ...., y b ∗ ) with 1 ≤ a ∗ ≤
b ∗ ≤ q that minimizes the DTW distance to X . In other words:

(a ∗, b ∗) = argmin 

(a ∗,b ∗):1 ≤a ∗≤b ∗≤q 

DT W ( X, Y ( a ∗ : b ∗)) . This technique works

by relaxing the boundary conditions of classical DTW. The forma-

tion of warping path (backtracking) can start from any column at

the last row of path cost matrix ( P ) and can end at any column

at the first row. P is initialized in the following manner. P (1 , 1) =
D (1 , 1) ;P (i, 0) 

1 <i ≤p 

= P (i −1 , 0) + D (i, 0) ;P (0 , j) 
1 < j≤q 

= P (0 , j−1) + D (0 , j) . The opti-

mal distance ( V ) is stored in the cell C start = [ argmin { P (p, i ) } ] 
1 ≤i ≤q 

. The

backtracking for warping path calculation also starts from this

particular cell, which ends at any cell in 1st row; i.e. at C end =
[ argmin { P (1 , i ) } ] 

1 ≤i ≤q 

. SSDTW has the same computational complexity

as DTW. 

6.3. Meshesha Jawahar DTW (MJ-DTW) 

When target signal differs from reference signal in terms of pre-

fixes and suffixes, the warping path can deviate (from diagonal)

in horizontal or in vertical directions at the beginning or at end.

Such situation can significantly increases the matching cost and

can disturb the matching for the corresponding part of the target

and reference signals. To avoid such behavior, a DTW based partial

sequence matching technique, dedicated to word spotting, is pro-

posed in [26] , for handling the variations at the beginning and at

the end of the sequences. To reduce unwanted extra cost, MJ-DTW

first analyzes whether the dissimilarity between words is concen-

trated at the end, at the beginning or both. Then, the extra cost at

the two extremes are removed to reduce the total matching score

and to obtain the optimal dissimilarity value. 

6.4. Experimental protocol and results 

To evaluate the performance of three above mentioned al-

gorithms, we performed multiple experiments with different

datasets. Even if these methods (except MJ-DTW) are not re-

ally defined to operate at word segmentation level, we evalu-

ated them on Dataset-GW-15, Dataset-CESR-10, Dataset-GW-90 and

Dataset-Bentham (see Fig. 8 a, Fig. 8 b, Fig. 8 c and Fig. 8 d), to see

whether they can be used in variable level of segmentation. No pa-

rameter tuning are required for SSDTW and MJ-DTW algorithms.

In the case of DTW-CW, ζ is taken as (2 × average stroke width)

for Dataset-CESR-10 and average character width for handwrit-

ten datasets (i.e. Dataset-GW-15, Dataset-GW-90 and Dataset-

Bentham) 14 . 

From the results, it can be concluded that these approaches are

not really efficient on segmented words. Even MJ-DTW seems not
14 Because the dataset is handwritten, it is difficult to have a proper estimation of 

average character width. So, we decided to consider (2 × average stroke width) as a 

rough approximation of character width. 

t

n

a

o useful, except when many queries are used (probably because

argets may change more often when considering many different

ueries), and especially on Dataset-GW-15. On Dataset CESR-10, re-

ults are a bit different: the considered approaches are not working

oorly and DTW-CW is even better than DTW. This is clearly un-

erstandable since the word segmentation process on this dataset

as not so accurate and then there exist some pieces of lines for

hich SSDTW and DTW-CW could be of interest. Nevertheless, it’s

igh computational cost due to the exhaustive search for obtain-

ng the best match is a bottleneck for DTW-CW (see Section 6.1 )

nd deciding the value of ζ is also a cumbersome process. On the

ontrary, due to the inherent architecture of SSDTW, it is compu-

ationally inexpensive. 

To evaluate the performance on datasets with segmented lines

Dataset-GW-HOG and Dataset-Japanese-HOG), we have only ex-

erimented SSDTW and DT W-CW. Indeed, MJ-DT W is irrelevant

ere since this technique is specifically designed for segmented

ords with pre and/or post conjugations. Fixing the skipping pa-

ameter ζ for DTW-CW is a tedious task as before, especially

n Dataset-Japanese-HOG (because of the complex script struc-

ure of Japanese language). So, we decided to find this thresh-

ld experimentally using a set of 3 queries. We performed the

xperiments by increasing the value of ζ with a gap of 5, i.e.

= 1 ; 5 ; 10 ; 15 ; 20 ; 25 ; 30 are considered. Increasing the value of ζ
s stopped when the accuracy start to decrease or becomes stable.

rom Fig. 9 a and Fig. 9 c 15 , it can be visible that the accuracy started

o decrease significantly from ζ = 10 . Of course, optimal results are

btained with ζ = 1 but it is highly time consuming. Consequently,

e considered the value of ζ = 5 as the best trade-off between

ccuracy and speed ( ζ = 10 remain also a good choice). The accu-

acy obtained by DTW-CW in such way is comparable with the ac-

uracy of SSDTW. However SSDTW is computationally inexpensive

nd thus is preferable. 

By analyzing the algorithms on small datasets, we observed that

he inter performance difference is not very high and the accura-

ies are close to each other. 

. Other relevant sequence matching techniques 

There are others relevant sequence matching techniques, which

ere proposed to overcome some of the architectural drawbacks of

TW by removing some constraints (especially boundary and con-

inuity conditions), which helps these techniques to skip outliers

rom query and/or target sequences. At the same time, the many-

o-one and one-to-many matching property of DTW is missing in

hese techniques. 

.1. Longest common subsequence (LCSS) 

The longest common subsequence dissimilarity measure is an

lgorithm based on edit distance or Levenshtein distance . The basic

dea is to match corresponding elements, keeping the order and al-

owing some elements to be unmatched or left out (e.g. outliers).

he LCSS [37] measure has two parameters, δ and ε. The constant

, which is usually set to a percentage of the sequence length, is a

onstrained window size for matching a given point from one se-

uence to a point in another sequence. It controls how far in time,

e can go in order to match a given point from one trajectory to a

oint in another trajectory. The constant 0 < ε < 1 is the matching

hreshold: two points from two sequences can be matched, if their

istance is less than ε. The performance of LCSS highly depends
15 It is not feasible to divide these 4 queries into learning and testing set for ob- 

aining the optimal value of ζ . Moreover, for comparing with other techniques, it is 

ecessary to have all the 4 queries. So, it can be said that the results are bit biased 

nd is favoring DTW-CW on this dataset. 
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Fig. 8. a) Performance comparison of different algorithms in this section on Dataset-GW-15. b) Performance comparison of different algorithms in this section on Dataset- 

CESR-10. c) Performance comparison of different algorithms in this section on Dataset-GW-90. d) Performance comparison of different algorithms in this section on Dataset- 

Bentham. 

Fig. 9. a) Performance comparison of DTW-CW technique for different values of sliding width (AW) for Dataset-GW-HOG on the learning set of 3 query images. b) Precision- 

Recall plot for DTW-CW and SSDTW for Dataset-GW-HOG on the complete query set. c) Performance comparison of DTW-CW technique for different values of sliding width 

(AW) for Dataset-Japanese-HOG on the full query set. d) Precision-Recall plot for SSDTW for Dataset-Japanese-HOG on the full query set. 
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n the correct setting of this threshold, which may be a difficult

roblem for some applications. 
By considering the ratio between length of the calculated

ongest common subsequence and that of whole sequence, the dis-
imilarity between query and target sequence is calculated. Since
he inherent goal of finding longest common subsequence is to
nd optimal substructure between two compared sequences, the
roblem of LCSS is often solved with dynamic programming. Given
wo sequences X = x 1 , x 2 , ....x p and Y = y 1 , y 2 , . . . , y q , the length of
heir longest common subsequence, denoted as L (X, Y ) is calcu-
ated by: 

L i, j 
 ≤i ≤p;1 ≤ j≤q 

= 

{ 

0 i f i = 0 and j = 0 
L i −1 , j−1 + 1 i f | x i − y j | < ε and | i − j| ≤ δ
max (L i, j−1 , L i −1 , j ) Otherwise 

(16) 

L (X, Y ) takes values from
p+ q −2 L p,q 

p+ q to 1 and is expected to per- 

orm better than DTW in presence of noise. 

.2. Derivative based longest common subsequence 

We can define two variants of LCSS as follows: 

i) 1D-LCSS: In this approach, the derivative ( ̄X and Ȳ ) of the

ignals X and Y are considered for computing LCSS, which should

ake it more robust to noise [11] . 

ii) DD-LCSS: This is an extension of 1D-LCSS, which considers

econd derivative of time series signal ( ̄̄X, ̄̄Y ), where, ¯̄X and 

¯̄Y rep-

esents the second order derivatives of X and Y [11] . 

.3. Minimal variance matching (MVM) 

This algorithm [20] is designed to handle partial se-

uence matching of two sequences : X = x 1 , x 2 , ....., x p and

 = y 1 , y 2 , ....., y q ; p ≤ q, which combines the strengths of both

TW and LCSS. Due to this outliers skipping property of MVM,

his approach is able to find a subsequence Y ′ of Y of length p
uch that X best matches with Y ′ ∈ Y . The distance matrix D (i, j) 

an be used as a directed acyclic graph (DAG) in which a parent

ode D (k,l) can be linked to a node D (i, j) at the next row and its

eft up to a given extent, which allows to skip some elements. The

ost function for linking two elements is defined by: 

(D k,l , D i, j ) = 

{
D i, j if i = k + 1 and l + 1 ≤ j ≤ L 

∞ otherwise 
(17)

 = (l + 1) + elast icit y − | j − i |; elast icit y = | q − p| (18)

onsidering a path leading to D i, j , its cost P (i, j) formally defined

y: 

 (i, j) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

(P (i, j)) 2 i f i = 1 ; 1 ≤ j ≤ q 

min 

( 

P (i, j) 
{ P (i − 1 , k ) + H(D i −1 ,k , D i, j ) } 

) 

i f L 

∞ Otherwise 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

L = 2 ≤ i ≤ m ; i ≤ k ≤ i + (q − p) ;
k + 1 ≤ j ≤ k + 1 + (q − p) (19) 

The optimal structure condition guarantees that the returned

atrix P contains the cost of the shortest path leading to every

ode. The path we are looking for, satisfies two conditions: i) start-

ng in the first row, between columns 1 and (q − p) + 1 ; i.e. at D 1 , j 

or j = 1 .... (q − p) + 1 ; ii) ending at some node in the last row D p, j 

or j = p....q . To find it, we just need to check the minimum value

f P in the last row and at specific columns. After that, we need

o back track for obtaining the warping path. 

.4. Optimal sequence bijection (OSB) 

This algorithm is an extension of MVM [21] algorithm. It is par-
icularly suitable for partial and elastic matching as it can skip out-
iers present in query as well as in target. In this way, OSB can also
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Table 4 

Performance comparison of other rel- 

evant techniques on GW-15 dataset 

Method name Accuracy (mAP) 

LCSS 0.0354 

1DLCSS 0.0489 

DDLCSS 0.0489 

OSB 0.2785 

MVM 0.2026 

CDP 0.3619 

Fig. 10. Performance comparison of other relevant techniques on Dataset-CESR-10. 
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i  
match a query longer than the target, which is not possible with
MVM. The goal of OSB is to find subsequences X 

′ of X ; ( X 

′ ∈ X ) and
Y ′ of Y ; ( Y ′ ∈ Y ) such that X 

′ best matches Y ′ . However, the freedom
of skipping elements should also be restricted to prevent unneces-
sary correspondences. To solve this purpose, a penalty of skipping
is introduced, which is called “jumpCost”, denoted as C . The opti-
mal correspondence can be found by generating a DAG, using the
distance matrix D . The nodes of the DAG are all index pairs ( i, j ) ∈
{1... p } × {1... q } and the edge cost W between the node ( i, j ) and ( k,
l ) is defined by: 

W{ (i, j)(k, l) } = 

{ √ 

(k − i − 1) 2 + (l − j − 1) 2 . C 

+ D (x k , y l ) i f i < k 
∧ 

j < l 
∞ otherwise 

(20)

Thus, the cost of an edge is defined by the Euclidean distance be-

tween vertices ( i, j ) and ( k, l ) in the matrix {1... p } × {1... q } times the

jump cost, plus the dissimilarity measure between elements x k and

y l . 

7.5. Continuous dynamic programming (CDP) 

CDP 16 [30] is able to perform subsequence matching (finding

full query in longer target sequence) and to locate multiple occur-

rences of the query in the target series. 

The path cost matrix ( P ) of CDP is obtained in the following

way: 

P ( j, i ) 

∣∣∣
i =1 

= 3 × D ( j, 1) (21a)

P ( j, i ) 

∣∣∣
i =2 

= min 

( 

P ( j − 2 , 1) + 2 × D ( j − 1 , 2) + D ( j, 2) 
P ( j − 1 , 1) + 3 × D ( j, 2) 
P ( j, 1) + 3 × D ( j, 2) 

) 

(21b)

P ( j, i ) 

∣∣∣
3 ≤i ≤p 

= min 

( 

P ( j − 2 , i − 1) + 2 × D ( j − 1 , i ) + D ( j, i ) 
P ( j − 1 , i − 1) + 3 × D ( j, i ) 
P ( j − 1 , i − 2) + D ( j, i − 1) + D ( j, i ) 

) 

(21c)

The output is obtained by A ( j) = 

1 
3 .p P ( j, p) ; where P ( j, p) is

given by: 

P ( j, p) = min 

(1 ≤i ≤p, j≥β(i ) , β(i +1) ≥β(i ) 

i = p ∑ 

i =1 

D (x (i ) , y ( j − β(i )) 

The above defined formula has an initial condition: P (−1 , j) =
P (0 , j) = ∞ . As it can be visible from Equation 21 that more re-

sistance is present for the diagonal link of the DP path compared

to other two links. 

7.6. Experimental protocol and results 

The performance of these sequence matching techniques on

segmented words from Dataset-GW-15 and Dataset-CESR-10 are

shown in Table 4 17 and Fig. 10 . For these experiments, LCSS (1D-

LCSS and DD-LCSS) parameters are set in the following way: δ is

set to 100% because LCSS is very resistant to the changes of δ
[11] . To compute ε automatically, we randomly choose two query
16 The implementation of CDP, used in our experiments, is taken from: http: 

//www.diva-portal.org/smash/get/diva2:347724/FULLTEXT01.pdf . Page no. 86 
17 Please note that, the P-R plot of Dataset-GW-15 is not shown because the ac- 

curacy of LCSS family (LCSS, 1DLCS, 2DLCSS) are very low compared to others. Due 

to this reason, when all the curves are put together in one graph, the curve of LCSS 

family is difficult to visualize. So, we prefer just to provide the statistical results. 

t  

e

w

w

equences. For each, we randomly choose two corresponding tar-

ets that should match with query. Then the distance matrices be-

ween the chosen queries and targets are calculated separately and

erged together (let’s say it D 

merged ). Now, ε is calculated by: ε =
ean (D 

merged ) + 2 × std(D 

merged ) . For 1D-LCSS and DD-LCSS (see

ection 7.2 ), ε is calculated by using D 

merged , obtained from 1 st and

 

nd derivative of the signals respectively. It is visible from these re-

ults that LCSS family has low accuracy compared to other match-

ng algorithms 18 . CDP outperforms the other techniques here on

oth the datasets, whereas OSB is also performing comparatively

ell 19 . But it’s high computational complexity (due to it’s inher-

nt architecture) is a bottleneck for exploring it on bigger dataset

uch as Dataset-GW-90 and Dataset-Bentham. In all cases, these

pproaches remains less accurate than other best performing ap-

roaches mentioned in aforementioned sections. It is observed that

takura-Band and even classical DTW remains better on Dataset-

W-15. Whereas, PDDTW remains better than CDP on Dataset-

ESR-10 even if CDP has performed better than DTW, which (DTW)

as shown overall good performance on all the datasets. 

For experiments on segmented lines (Dataset-GW-HOG and

ataset-Japanese-HOG), we only tested CDP, MVM and OSB tech-

iques. The P-R plots are shown in Fig. 11 . Thanks to its special

P-path and associated weights, CDP has outperformed MVM and

SB on both the datasets. Moreover, CDP also achieves better ac-

uracy than aforementioned SSDTW. One can notice the drop in

erformance of MVM and OSB here whereas they were compet-

tive on previous benchmarks. This can be explained by the fact

hat, in the case of slit style HOG features, wrong jumps performed
18 Of course, it might be possible to optimize the parameters of such approaches, 

specially using learning data but then, the comparison with other approaches 

ould become unfair. 
19 please see Section 3 in [21] to understand the ”jumpCost” calculation process, 

e used the same approach in our case. 

http://www.diva-portal.org/smash/get/diva2:347724/FULLTEXT01.pdf
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Fig. 11. a) Performance comparison of other relevant sequence matching techniques on Dataset-GW-HOG. b) Performance comparison of other relevant sequence matching 

techniques on Dataset-Japanese-HOG. c) Performance comparison of different DP paths on Dataset-GW-90. d) Performance comparison of different DP paths on Dataset- 

Bentham. 

Table 5 

Comparative word spotting accuracy of all the above mentioned sequence matching techniques on six datasets. 
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y MVM or OSB can completely disturb the matching process (be-

ause of the size of slits) whereas these jumps could be useful to

imit noise impact in column based features used with Dataset-

W-15 and Dataset-CESR-10. 

In the case of Dataset-GW-90 and Dataset-Bentham, due to the

igh computational complexity of OSB and also because CDP was

erforming better in almost all the datasets, we have only tested

DP. The corresponding P-R curves and mAP values are shown in

ig. 11 c and Fig. 11 d respectively. The accuracy on both datasets is
c  
lose to classical DTW, which makes it of little interest on such

ind of datasets. 

. Overall comparative analysis of algorithms and conclusions 

In this paper, different dynamic programming matching tech-

iques were explored for word spotting purpose. Indeed, there ex-

sts a wide variety of variations of the popular DTW, only classical-

TW has been used most of the time without any justification. Our

omparison was based on experimental protocols, involving hand-
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Table 6 

Time required for finding one keyword in GW. 
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written datasets (George Washington, Bentham and a Japanase

dataset) and a historical printed document. Two levels of segmen-

tation were considered: word level, with perfect segmentation as

well as basic segmentation results (which includes wrong segmen-

tation, i.e. pieces of words or of lines); line level (with good seg-

mentation). Different size of query sets were also used, including

small ones, composed only of relevant queries, as well as larger

ones which includes many possible queries, except very small and

unique words. To describe the word images, column-based features

were mainly used. 

The mAP values of all algorithms are summarized in Table 5 .

Most of the highlighted algorithms have shown credible perfor-

mances on multiple datasets. The conclusions drawn from these

results are that classical DTW remains a good option in general

for segmented words. Its constrained version with Itakura paral-

lelogram (easier to use than SC-band) on handwritten data seems

to prevent pathological matching and provides very good results.

It is also faster. But when there are some segmentation problems

or local variations in the signal (because of linguistic variations

for example) such kind of constraints can deteriorate the perfor-

mances (e.g. Dataset-CESR-10). Various DP-path and weighting (e.g.

0-Sym_1, 0.5-Sym etc.) do not present significant improvements in

accuracy over classical DTW. Only LDTW seems to improve clas-

sical DTW but it remains less accurate than Itakura which has a

better complexity. 

Considering signal transforms, the performance of Hilbert trans-

form on all the 4 datasets is quite impressive. It is better than

Itakura on handwritten datasets with many queries and one of

the best methods on printed data. On the printed Dataset-CESR-10,

only PDTW and PDDTW are better (in-fact the best). This is proba-

bly because the column-based features used here, extracted on 300

dpi images and combined with printed nature of data, might intro-

duce redundancies distinguishable only by noise effect. Then using

aggregation of data and derivation could be improving the overall

signal quality. 

Finally, on line segmented datasets, CDP seems to be the best

option, considering substring matching. It is also working well on

improperly segmented words of Dataset-CESR-10, even if less accu-

rate than PDDTW. The Table 6 is presenting complementary infor-

mation about time needed to do the matching for one query with

all words in Dataset-GW-15. The experiments were performed,

by using Intel i7 processor and 4 GB RAM. MatLab-7.14 is used

for implementing algorithms except Fast-DTW, in Java. For proper

comparison, DTW was also implemented in Java (in blue). The

large difference in time factor between the two implementations is

clearly visible. As expected, we can see that SC and Itakura Bands,

as well as PDTW, are speeding up DTW, whereas, OSB and DTW-

CW are much slower, but CDP is faster. 
Otherwise, most algorithms have the same time complexity as

lassical DTW. Please note that any of the dataset out of six is

ot divided as training & testing set except for the case of 1D-

CSS and DD-LCSS (details of training & testing set is mentioned

n Section 7.6 ). 

In future works, several points could be investigated in detail.

he very important one is the relationship between the feature

evel extraction, the resolution and the nature of the data. Find-

ng a relationship between these elements may avoid confusions

f choice between DTW and data-abstraction based methods (or

o select directly the appropriate method). Another study of inter-

st could be how to combine different approaches. For example,

arametric combinations have been studied in the domain of time

eries matching [12,13] . We tried to apply these ones in our case by

ombining pairs of algorithms (e.g. DTW with LDTW). The results

chieved are not showing a significant increase in accuracy. More-

ver, the parametric combination is not easy to obtain and would

eed training data. Consequently, this kind of combination is prob-

bly not the one to investigate at first. On the contrary, combining

r doing hybridization between algorithms seems more promising.

or example, we tested LDTW constrained with Itakura parallelo-

ram (named as LDTW , see Algorithm 2 ). This combination seems

Algorithm 2: LDTW 

Input : p, q, D 

Output : D 

1 for i ← 1 to p do 

2 for j ← 1 to q do 

3 bool = Itakura (i, j, p, q ) ; 

4 if bool then 

5 Q (i, j) ← LDT W (i, j, D ) ; 

6 D = D (p, q ) / | w k | � The final distance 

7 return ;

nteresting since LDTW is a DP based approach, which applies dif-

erent DP paths at different location of path cost matrix. Without

onstraints, LDTW specific equation might be counter-productive

n some parts of the matching. What we observed is that this

ombination is giving nearly same results on Dataset-Bentham,

hereas it increases the accuracy of 4% on Dataset-GW-90 (from

.229% for LDTW and 0.226% for Itakura to 0.276% for LDTW con-

trained by Itakura). 
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