
Expert Systems With Applications 94 (2018) 41–57

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A parallel graph edit distance algorithm

�

Zeina Abu-Aisheh

∗, Romain Raveaux , Jean-Yves Ramel , Patrick Martineau

Laboratoire d’Informatique (LI), Université François Rabelais, 37200, Tours, France

a r t i c l e i n f o

Article history:

Received 22 June 2017

Revised 14 September 2017

Accepted 18 October 2017

Available online 20 October 2017

Keywords:

Graph matching

Parallel computing

Graph edit distance

Pattern recognition

Load balancing

a b s t r a c t

Graph edit distance (GED) has emerged as a powerful and flexible graph matching paradigm that can be

used to address different tasks in pattern recognition, machine learning, and data mining. GED is an error-

tolerant graph matching problem which consists in minimizing the cost of the sequence that transforms

a graph into another by means of edit operations. Edit operations are deletion, insertion and substitution

of vertices and edges. Each vertex/edge operation has its associated cost defined in the vertex/edge cost

function. Unfortunately, Unfortunately, the GED problem is NP-hard. The question of elaborating fast and

precise algorithms is of first interest. In this paper, a parallel algorithm for exact GED computation is pro-

posed. Our proposal is based on a branch-and-bound algorithm coupled with a load balancing strategy.

Parallel threads run a branch-and-bound algorithm to explore the solution space and to discard mislead-

ing partial solutions. In the mean time, the load balancing scheme ensures that no thread remains idle.

Experiments on 4 publicly available datasets empirically demonstrated that under time constraints our

proposal can drastically improve a sequential approach and a naive parallel approach. Our proposal was

compared to 6 other methods and provided more precise solutions while requiring a low memory usage.

© 2017 Elsevier Ltd. All rights reserved.

1

s

v

w

t

t

r

o

c

i

G

d

e

s

a

a

t

Y

t

A

c

i

l

D

F

&

t

v

p

&

F

t

a

p

K

b

h

0

. Introduction

Attributed graphs are powerful data structures for the repre-

entation of structured entities. In a graph-based representation,

ertices and their attributes describe objects (or part of objects)

hile edges represent interrelationships between the objects. Due

o the inherent genericity of graph-based representations, and

hanks to the improvement of computer capacities, structural

epresentations have become more and more popular in the field

f Pattern Recognition.

Graph edit distance (GED) is a graph matching paradigm whose

oncept was first reported in Sanfeliu and Fu (1983) . The basic idea

s to find the best sequence of edit operation to transform a graph

 1 into another graph G 2 . The allowed operations are insertion,

eletion and/or substitution of vertices and their corresponding

dges. GED can be used as a dissimilarity measure for arbitrarily

tructured and arbitrarily attributed graphs. In contrast to other

pproaches, it does not suffer from any restrictions and can be

pplied to any type of graph (including hypergraphs (Bunke &
� Fully documented templates are available in the elsarticle package on CTAN .
∗ Corresponding author.

E-mail addresses: zeina.abu-aisheh@univ-tours.fr , Zeina.Abu-Aisheh@univ-

ours.fr (Z. Abu-Aisheh), Romain.Raveaux@univ-tours.fr (R. Raveaux), Jean-

ves.Ramel@univ-tours.fr (J.-Y. Ramel), Patrick.Martineau@univ-tours.fr (P. Mar-

ineau).

URL: http://www.elsevier.com (Z. Abu-Aisheh)

p

t

p

g

p

h

v

ttps://doi.org/10.1016/j.eswa.2017.10.043

957-4174/© 2017 Elsevier Ltd. All rights reserved.
llermann, 1983)). The main drawback of GED is its computational

omplexity which is exponential in the number of vertices of the

nvolved graphs.

Many fast heuristic GED methods have been proposed in the

iterature (Bougleux et al., 2017; Fankhauser, Riesen, Bunke, &

ickinson, 2012; Ferrer, Serratosa, & Riesen, 2015; Fischer, Suen,

rinken, Riesen, & Bunke, 2013; Serratosa, 2015; Christmas, Kittler,

 Petrou, 1995; Zeng, Tung, Wang, Feng, & Zhou, 2009). However,

hese heuristic algorithms can only find unbounded suboptimal

alues. On the other hand, only few exact approaches have been

roposed (Abu-Aisheh, Raveaux, Ramel, & Martineau, 2015; Justice

 Hero, 2006; Riesen, Fankhauser, & Bunke, 2007; Tsai, Member, &

u, 1979).

Parallel computing has been fruitfully employed to handle

ime-consuming operations. Research results in the area of parallel

lgorithms for solving machine learning and computer vision

roblems have been reported in Kumar, Gopalakrishnan, and

anal (1990) . These researches demonstrated that parallelism can

e exploited efficiently in various machine intelligence and vision

roblems such as deep learning (Deng & Yu, 2014) or fast Fourier

ransform (Van Loan, 1992). In this paper, we take benefit of

arallel computing to solve the exact GED problem.

The main contribution of this paper is an exact parallel al-

orithm based on a load balancing strategy for solving the GED

roblem. This paper lies in the idea that a parallel execution can

elp to converge faster to the optimal solution. Our method is

ery generic and can be applied to directed or undirected fully

https://doi.org/10.1016/j.eswa.2017.10.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.10.043&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:zeina.abu-aisheh@univ-tours.fr
mailto:Zeina.Abu-Aisheh@univ-tours.fr
mailto:Romain.Raveaux@univ-tours.fr
mailto:Jean-Yves.Ramel@univ-tours.fr
mailto:Patrick.Martineau@univ-tours.fr
http://www.elsevier.com
https://doi.org/10.1016/j.eswa.2017.10.043

42 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Fig. 1. An incomplete search tree example for solving the GED problem. The first

floor represents possible matchings of vertex A with each vertex of the second

graph (in blue). A tree node is a partial solution which is to say a partial edit path.

(For interpretation of the references to color in this figure legend, the reader is re-

ferred to the web version of this article.)

o

i

C

m

o

a

o

a

s

e

a

t

c

b

f

t

c

t

t

G

b

T

t

2

b

t

i

(

s

s

r

r

a

E

b

fi

i

s

t

s

c

attributed graphs (i.e., with attributes on both vertices and edges).

By limiting the run-time, our exact method provides (sub)optimal

solutions and becomes an efficient upper bound approximation

of GED. A complete comparative study is provided where 6 exact

and approximate GED algorithms were compared on 4 graph

datasets. By considering both the quality of the proposed solutions

and the speed of the algorithm, we show that our proposal is a

good choice when a fast decision is required as in a classification

context or when the time is less a matter but a precised solution

is required as in image registration.

This paper is organized as follows: Section 2 presents the

important definitions necessary for introducing our GED algo-

rithm. Then, Section 3 reviews the existing approximate and

exact approaches for computing GED. Section 4 describes the

proposed parallel scheme based on a load balancing paradigm.

Section 5 presents the experiments and analyses the obtained

results. Section 6 provides some concluding remarks.

2. Problem statements

In this section, we first introduce the GED problem which is

formally defined as an optimization problem. Secondly, to cope

with the inherent complexity of the GED problem, the use of

parallel computing is argued. However, the parallel execution of a

combinatorial optimization problem is not trivial and consequently

the load balancing question is being raised. Finally, the load

balancing problem is formally defined and presented to establish

the basement of an efficient parallel algorithm.

2.1. Graph edit distance problem

Attributed graph is defined as a tuple of 4 sets (V, E, μ, ζ) such

that:

Definition 1. Attributed Graph

G = (V, E, μ, ζ)

V is a set of vertices

E is a set of edges such as E ⊆V × V

μ: V → L V such that μ is a vertex labeling function which

associates a label l V to a vertex v i with v i ∈ V , ∀ i ∈ [1, | V |]

ζ: E → L E such that ζ is an edge labeling function which

associates a label l E to an edge e i with e i ∈ E , ∀ i ∈ [1, | E |]

Definition 1 allows to handle arbitrarily structured graphs with

unconstrained labeling functions. Labels for both vertices and

edges can be given by a set of integers L = {1, 2, 3, ���}, a vector

space L = R

n and/or a finite set of symbolic labels L = { x, y, z , ���}.

GED is an error-tolerant graph matching paradigm, it defines

the dissimilarity of two graphs by the minimum amount of dis-

tortion needed to transform one graph into another (Bunke &

Allermann, 1983). GED requires that each vertex/edge of graph G 1

is mapped to a distinct vertex/edge of graph G 2 or to a dummy

vertex/edge. This dummy elements can absorb structural modifi-

cations between the involved two graphs. More formally, GED can

be defined as follows:

Definition 2. Graph Edit Distance Problem

GED (G 1 , G 2) = min

γ ∈ �(G 1 ,G 2)

∑

o∈ γ
c(o)

where �(G 1 , G 2) denotes the set of edit paths transforming

G 1 = (V 1 , E 1 , μ1 , ζ1) into G 2 = (V 2 , E 2 , μ2 , ζ2) , and c denotes the

cost function measuring the strength c (o) of edit operation o .

A sequence of edit operations γ that transforms a graph G 1

into a graph G 2 is commonly referred to as edit path between G 1

and G . In order to represent the degree of modification imposed
2
n a graph by an edit path, a cost function is introduced measur-

ng the strength of the distortions caused by each edit operation.

onsequently, the edit distance between graphs is defined by the

inimum cost edit path between two graphs. Note that the edit

perations on edges can be inferred by edit operations on their

djacent vertices, i.e., whether an edge is substituted, deleted,

r inserted, depends on the edit operations performed on its

djacent vertices. An elementary edit operation o is one of vertex

ubstitution (v 1 → v 2), edge substitution (e 1 → e 2), vertex deletion

(v 1 → ε) , edge deletion (e 1 → ε), vertex insertion (ε → v 2) and

dge insertion (ε → e 2) with v 1 ∈ V 1 , v 2 ∈ V 2 , e 1 ∈ E 1 and e 2 ∈ E 2 . ε is

 dummy vertex or edge which is used to model insertion or dele-

ion. c (.) is a cost function on elementary edit operations o . The

ost function c (.) is of first interest and can change the problem

eing solved. In Bunke (1997) and Brun (2012) a particular cost

unction for GED was introduced, and it was shown that under

his cost function, GED computation is equivalent to the maximum

ommon subgraph problem. Neuhaus and Bunke (2007) showed

hat if each elementary operation satisfies the criteria of a dis-

ance (separability, symmetry and triangular inequality) then

ED is metric. Recently, methods to learn the matching edit cost

etween graphs have been published (Cortés & Serratosa, 2015).

he discussion around the cost functions is beyond the topic of

his paper that essentially focuses on the GED computation.

.2. From GED problem to load balancing problem

GED is a discrete optimization problem that faces the com-

inatorial explosion curse. The complexity of GED was proven

o be NP-hard where the computational complexity of matching

s exponential in the number of vertices of the involved graphs

 Zeng et al., 2009). At run time, the evolution of the size and

hape of the search space is irregular and unpredictable. The

earch space is represented as an ordered tree.

For the sake of clarity in the rest of the paper, the term vertex

efers to an element of a graph while the term tree node or node

epresents an element of the search tree.

The initial and leaf tree nodes correspond to the initial state

nd the final acceptable state in the search tree, respectively.

ach edge represents a possible way of state change. A com-

inatorial optimization problem is essentially the problem of

nding a minimum-cost path from an initial node to a leaf node

n the search tree. More concretely in GED, each tree node is a

equence of edit operations. Leaf nodes are complete edit opera-

ions sequences (edit path) while intermediate nodes are partial

olutions representing partial edit path. An example of search tree

orresponding to GED computation is shown in Fig. 1 .

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 43

t

s

s

p

r

h

t

a

t

w

r

o

w

a

a

&

i

d

o

a

e

t

e

2

i

e

(

c

g

a

i

s

o

t

o

s

f

2

o

t

r

c

p

s

t

2

r

o

a

b

L

t

i

w

p

m

b

I

o

n

a

t

p

L

r

r

t

r

t

t

3

t

l

c

(

f

3

e

m

3

o

s

a

a

i

t

g

e

c

s

t

t

i

c

t

(

a

v

G

A

G

i

m

a

i

u

t
The parallelism of combinatorial optimization problems is not

rivial. In a parallel combinatorial search application, each thread

earches for optimal solutions within a portion of the solution

pace. The shape and size of the search space change as the search

roceeds. Consequently, tree nodes are generated and destroyed at

un-time.

Portions that encompass the most promising solutions with

igh probability are expanded in priority and explored exhaus-

ively, while portions that have unfruitful solutions are discarded

t run-time. To ensure that parallel threads are always busy,

ree nodes have to be dispatched at run-time. Hence, the local

orkload of a thread is difficult to predict.

The parallel execution of combinatorial optimization problems

elies on load balancing strategies to divide the global workload

f all threads iteratively at run-time. From the viewpoint of a

orkload distribution strategy, parallel optimizations fall in the

synchronous communication category where no thread waits

nother thread to finish in order to start a new task (Bertsekas

 Tsitsiklis, 1997). A thread initiates a balancing operation when

t becomes lightly loaded or overloaded. The objective of the

ata distribution strategies is to ensure a fast convergence to the

ptimal solution such that all the tree nodes are evaluated as fast

s possible. In this paper, we propose a parallel GED approach

quipped with a load balancing strategy. This approach ensures

hat all threads have the same amount of load and all threads

xplore the most promising tree nodes first.

.3. Load balancing problem

A parallel program is composed of multiple threads , each thread

s a processing unit which processes one task. Multiple threads can

xist within the same process and share resources such as memory

i.e., the values of its variables at any given moment). In our GED

ase, the task is to evaluate a tree node (a partial edit path) and to

enerate its children (the next possible states). A thread performs

 task on a set of works. A work is a tree node characterized by

ts workload. A work cannot be shared between threads, it is the

mallest unit of concurrency the parallel program can exploit.

Creating a parallel program involves first decomposing the

verall computation into works and then assigning the works to

hreads. The decomposition together with the assignment steps is

ften called partitioning. The assignment on its own is referred to

tatic load balancing.

Load balancing algorithms can be broadly categorized into two

amilies: Static and dynamic.

.3.1. Static load balancing

Static load balancing algorithms distribute works to threads

nce and for all, in most cases relying on a priori knowledge about

he works and the system on which they run. These algorithms

ely on the estimated execution times of works and inter-thread

ommunication requirements. It is not satisfactory for parallel

rograms that dynamic and/or unpredictable. The problem of

tatic load balancing is known to be NP-hard when the number of

hreads is greater or equal to 2 (Drozdowski, 2009).

.3.2. Dynamic load balancing

Dynamic load balancing algorithms bind works to threads at

un-time. Generally, a dynamic load balancing algorithm consists

f three components: A load measurement rule, an initiation rule

nd a load balancing operation. A very detailed definition of load

alancing models can be found in Xu and Lau (1997) .

oad Measurement. Dynamic load balancing algorithms rely on

he workload information of threads. The workload information

s typically quantified by a load index, a non-negative variable
hich is equal to zero if the thread is idle or takes an increasing

ositive value when the load increases (Xu & Lau, 1997). Since the

easure of workload would occur frequently, its calculation must

e efficient.

nitiation Rule. This rule dictates when to initiate a load balancing

peration. The execution of a balancing operation incurs non-

egligible overhead; its invocation must weight its overhead cost

gainst its expected performance benefit. An initiation policy is

hus needed to determine whether a balancing operation will be

rofitable.

oad Balancing Operation. This operation is defined by three

ules: Location, distribution and selection rules. The location

ule determines the partners of the balancing operation, i.e., the

hreads to involve in the balancing operation. The distribution

ule determines how to redistribute workload among the selected

hreads. The selection rule selects the most suitable data for

ransfer among threads.

. Related work

In this section, an overview of the GED methods presented in

he literature is given. Since our goal is to speed up the calcu-

ations of GED, parallelism is highly required. Therefore, we also

over the parallel methods, dedicated to solving branch-and-bound

BnB) problems, aiming at getting inspired by some of these works

or parallelizing the GED calculations.

.1. State-of-the-art of graph edit distance

The methods of the literature can be divided into two cat-

gories depending on whether they can ensure the optimal

atching to be found or not.

.1.1. Exact graph edit distance approaches

A widely used method for edit distance computation is based

n the A

∗ algorithm (Riesen et al., 2007). This algorithm is con-

idered as a foundation work for solving GED. A

∗ is a best-first

lgorithm where the enumeration of all possible solutions is

chieved by means of an ordered tree that is constructed dynam-

cally at run time by iteratively creating successor nodes. At each

ime, the node or so called partial edit path p that has the least

(p) + h (p) is chosen where g (p) represents the cost of the partial

dit path accumulated so far whereas h (p) denotes the estimated

ost from p to a leaf node representing a complete edit path. The

um g(p) + h (p) is referred to as a lower bound lb (p). Given that

he estimation of the future costs h (p) is lower than, or equal to,

he real costs, an optimal path from the root node to a leaf node

s guaranteed to be found (Riesen & Bunke, 2009). Leaf nodes

orrespond to feasible solutions and so complete edit paths. In

he worst case, the space complexity can be expressed as O (| �|)

 Cormen et al., 2009) where | �| is the cardinality of the set of

ll possible edit paths. Since | �| is exponential in the number of

ertices involved in the graphs, the memory usage is still an issue.

To overcome the A

∗ problem, a recent depth-first BnB

ED algorithm, referred to as DF , has been proposed in Abu-

isheh et al. (2015) . This algorithm speeds up the computations of

ED thanks to its upper and lower bounds pruning strategy and

ts preprocessing step. Moreover, this algorithm does not exhaust

emory as the number of pending edit paths that are stored at

ny time t is relatively small thanks to the space complexity which

s equal to | V 1 |.| V 2 | in the worst case.

In both A

∗ and DF, h (p) can be estimated by mapping the

nprocessed vertices and edges of graph G 1 to the unmapped to

hose of graph G such that the resulting cost is minimal. The
2

44 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Table 1

Characteristics of exact graph edit distance methods.

Reference Size of Graphs Execution Time Complexity Parallel?

Riesen et al. (2007) 10 10 ms Exponential No

Abu-Aisheh et al. (2015) 15 10 0,0 0 0 ms Exponential No

Justice and Hero (2006) 40 150,0 0 0 ms Exponential No

c

O

g

s

I

i

I

t

c

b

l

s

l

d

m

r

l

a

c

3

m

c

m

n

s

g

2

w

g

3

I

i

s

d

d

3

t

t

p

i

s

o

o

t

m

E

l

p

o

1 Kernels are functions executed by many GPU threads in parallel.
unprocessed edges of both graphs are handled separately from the

unprocessed vertices. This mapping is done in a faster way than

the exact computation and should return a good approximation of

the true future cost. Note that the smaller the difference between

h (p) and the real future cost, the fewer nodes will be expanded by

A

∗ and DF .

Almohamad and Duffuaa (1993) proposed the first linear pro-

gramming formulation of the weighted graph matching problem.

It consists in determining the permutation matrix minimizing the

L 1 norm of the difference between adjacency matrix of the input

graph and the permuted adjacency matrix of the target one. More

recently, Justice and Hero (2006) also proposed a binary linear

programming formulation of the graph edit distance problem. GM

is treated as finding a subgraph of a larger graph known as the

edit grid. The edit grid only needs to have as many vertices as the

sum of the total number of vertices in the graphs being compared.

One drawback of this method is that it does not take into account

attributes on edges which limits the range of application.

Table 1 synthesizes the aforementioned methods in terms of

the size of the graphs they could match, the execution time and

the complexity. One can see the complexity of the exact GED in

terms of the number of vertices that the methods could match.

Based on these facts, researchers shed light on the approximate

GED side.

3.1.2. Approximate graph edit distance approaches

Variants of approximate GED algorithms are proposed to make

GED computation substantially faster. A modification of A

∗, called

Beam-Search (BS), has been proposed in Neuhaus, Riesen, and

Bunke (2006) . The purpose of BS , is to prune the search tree while

searching for an optimal edit path. Instead of exploring all edit

paths in the search tree, a parameter s is set to an integer x which

is in charge of keeping the x most promising partial edit paths in

the set of promising candidates.

In Riesen and Bunke (2009) , the problem of graph matching

is reduced to finding the minimum assignment cost where in the

worst case, the maximum number of operations needed by the

algorithm is O (n 3). This algorithm is referred to as BP . Since BP

considers local structures rather than global ones, the optimal

GED is overestimated. Recently, researchers have observed that

BP ’s overestimation is very often due to a few incorrectly assigned

vertices. That is, only few vertex substitutions from the next step

are responsible for additional (unnecessary) edge operations in the

step after and thus resulting in the overestimation of the optimal

edit distance. In Riesen and Bunke (2014) , BP is used as an initial

step. Then, pairwise swapping of vertices (local search) is done

aiming at improving the accuracy of the distance obtained so far.

In Riesen, Fischer, and Bunke (2014) , a search procedure based on

a genetic algorithm is proposed to improve the accuracy of BP .

These improvements increase run times. However, they improve

the accuracy of the BP solution.

In Fischer, Suen, Frinken, Riesen, and Bunke (2015) , the

authors propose a novel modification of the Hausdorff dis-

tance that takes into account not only substitution, but also

deletion and insertion cost. H (V 1 , V 2) is defined as follows:

H(V 1 , V 2) =

∑

g 1
min g 2 c̄ 1 (u, v) +

∑

g 2
min g 1 c̄ 2 (u, v) which can be

interpreted as the sum of distances to the most similar vertex in

the other graph. This approach allows multiple vertex assignments,
onsequently, the time complexity is reduced to quadratic (i.e.,

 (n 2)) with respect to the number of vertices of the involved

raphs. In Riesen (2015) and Bougleux et al. (2017) , the GED was

hown to be equivalent to a Quadratic Assignment Problem (QAP).

n Bougleux et al. (2017) , the QAP formulation of the GED problem

s solved by two well-known graph matching methods called

nteger Projected Fixed Point method (Leordeanu, Hebert, & Suk-

hankar, 2009) and Graduated Non Convexity and Concavity Pro-

edure (Liu & Qiao, 2014). These two approximate methods have

een adapted and optimized to solve sub-optimally the GED prob-

em. In Leordeanu et al. (2009) , this heuristic improves an initial

olution by trying to solve a linear assignment problem and the re-

axed QAP where binary constraints are relaxed to the continuous

omain. Iteratively, the quadratic formulation is linearly approxi-

ated by its 1st-order expansion around the current solution. The

esulting assignment helps at guiding the minimization of the re-

axed QAP. In Liu and Qiao (2014) , a path following algorithm aims

t approximating the solution of a QAP by considering a convex-

oncave relaxation through the modified quadratic function.

.1.3. Synthesis

Table 2 summarizes the aforementioned approximate GED

ethods. Approximate GED methods often have a polynomial

omputational time in the size of the input graphs and thus are

uch faster than the exact ones. Nevertheless, these methods do

ot guarantee to find the optimal matching. On the exact GED

ide, only few approaches have been proposed to postpone the

raph size restriction (Abu-Aisheh et al., 2015; Justice & Hero,

006; Riesen et al., 2007; Tsai et al., 1979). For all these reasons,

e believe that proposing a fast and exact GED algorithm is of

reat interest.

.2. State-of-the-art of parallel branch-and-bound algorithms

Parallel BnB algorithms have been wildly studied in the past.

n this section, we report approaches that have been proposed

n the literature to solve BnB in a fully parallel manner. The

tate-of-the-art in this section is divided into two big families,

epending on whether or not the exploration of the search tree is

one in a regular way.

.2.1. Regular exploration of the search space

Chakroun and Melab (2013) put forward a template that

ransforms the unpredictable and irregular workload associated to

he explored BnB tree into regular data-parallel GPU kernels. 1 A

ool of pending nodes is offloaded to the GPU where each node

s evaluated in parallel. Moreover, the branching and pruning

teps are performed on the CPU side. In fact, besides equivalent

perations, the pruning operator on top of GPU reduces the time

f transferring the resulting pool from the GPU to the CPU since

he non promising generated sub-problems are kept in the GPU

emory and deleted there. The authors of Boukedjar, Lalami, and

l-Baz (2012) presented a CPU-GPU model. When a kernel is

aunched, the works are assigned to idle threads. Each thread

erforms computation on only one node of the BnB list. More-

ver, each thread has its own register and private local memory.

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 45

Table 2

Characteristics of approximate GED methods.

Reference Size of Graphs Execution Time Complexity Parallel?

Riesen and Bunke (2009) 100 400 ms Cubic No

Riesen et al. (2007) 70 28 s | V 1 |
x No

Fischer et al. (2015) 100 500 ms Quadratic No

Bougleux et al. (2017) 70 27 s Cubic No

T

C

i

t

g

b

D

b

t

r

s

c

t

t

a

t

u

3

p

p

i

A

N

s

s

T

t

t

n

K

a

u

t

C

a

s

t

e

a

h

a

g

a

i

e

e

i

p

a

s

A

L

e

b

s

3

t

t

a

o

T

v

p

(

2

C

e

n

t

a

t

i

t

t

w

e

o

c

b

G

t

L

t

e

b

4

s

o

t

t

o

R

p

t

p

p

p

2 Asynchronous communication indicates that no thread waits another thread to

finish in order to start its new task (Bertsekas & Tsitsiklis, 1997).
hreads can communicate by means of a global memory. Both

hakroun and Melab (2013) and Boukedjar et al. (2012) solved the

rregularity of BnB. However, the explorations in both approaches

ake longer time. That is because in the first kernel each thread

enerates only one child at each time while the elimination of

ranches occurs in the second kernel.

An OPEN-MP approaches have been put forward in

orta, Leon, and Rodriguez (2003) . T threads are established

y the master program. Moreover, the master program generates

ree nodes and put them in a queue. Then T tree nodes are

emoved from the queue and assigned to each thread. The best

olution must be modified carefully where only one thread can

hange it at any time. The same thing is done when a thread

ries to insert a new tree nodes in the global shared queue. In

his approach, each thread only takes one node, explores it and

t the end of its exploration it sends its result to the master

hat forwards the message to other slaves if the upper bound is

pdated. Thus, this model did not tackle the irregularity of BnB.

.2.2. Irregular exploration of the search space

A master-slave parallel formulation of depth-first search was

roposed in Rao and Kumar (1987) . Each thread takes a disjoint

art of the search space. Once a thread finishes its assigned part,

t steals unexplored nodes of the search space of another thread.

 dynamic depth eager scheduling method was proposed in

eary and Cappello (2005) . In the beginning, a depth parameter is

et to 2, which means that all the tasks whose level in the search

pace is 2 are processed by threads with no further subdivision.

hen, each thread works on its associated problems. When a

hread runs out of work, it requests work from some thread

hat it knows. This balances the computational load as long as the

umber of tasks per thread is high. The communication in Rao and

umar (1987) and Neary and Cappello (2005) is asynchronous,

nd thus threads communicate if they succeed in updating the

pper bound. An eager scheduling approach is used to make the

asks balanced depending on the difficulty of each tree node.

A master-slave hybrid Depth-First/Best-First was proposed in

hung, Flynn, and Sang (2012) . The master thread keeps gener-

ting the tree nodes at a predetermined level (i.e., level i) and

aves them to a work pool. Then, each of the worker threads

akes a node with the minimum lower bound from the pool and

xplores it in a depth-first way. Generating and exploring nodes

re repeated until finding the solution of the problem. This model

as a less communication between threads, however, it is irregular

s the works given to threads do not have the same difficulty.

In Allen and Yasuda (1997) , a BnB algorithm for solving inexact

raph matching was proposed. This algorithm aims at determining

 minimum-distance between two unattributed graphs. At each

teration, each thread takes a node from its queue to be solved by

xpanding it in a depth-first search way until its branch is fully

xplored, updating the local best permutation and the correspond-

ng degree of mismatch and eliminating test. Afterwards, a global

ermutation with its corresponding degree of mismatch is updated

nd given to all threads when all of them finish solving their cho-

en nodes or problems, then, a next node is chosen by each thread.

 thread becomes inactive when it has no node left in its queue.

oad balancing is performed if the number of inactive threads with
mpty queues is above a threshold T . The best permutation and the

est degree of match are only updated at the end of each iteration,

uch a fact will not prune the search space as fast as possible.

.2.3. Synthesis

Based on the aforementioned parallel BnB algorithms and to

he best of our knowledge, none of these algorithms addressed

he GED problem. We believe that proposing a parallel branch-

nd-bound algorithm dedicated to solving the GED problem is

f great interest since the computational time will be improved.

he search tree of GED is irregular (i.e., the number of tree nodes

aries depending on the ability of the lower and upper bounds in

runing the search tree) and thus the regular parallel approaches

e.g., Boukedjar et al., 2012; Chakroun & Melab, 2013; Dorta et al.,

003) are not suitable for such a problem.

The approaches in Rao and Kumar (1987) ,

hung et al. (2012) and Neary and Cappello (2005) are inter-

sting since the communication is asynchronous 2 and thus there is

o need to stop a thread if it did not finish its tasks, unless another

hread ran out of tasks. In Chung et al. (2012) , however, load bal-

ncing is not integrated. Thus, when there are no more problems

o be generated by the master thread, some threads might become

dle for a certain amount of time while waiting the other threads

o finish their associated tasks. For GED , load balancing is impor-

ant to keep the amount of work balanced between all threads.

On this basis, we propose a parallel GED method equipped

ith a load balancing strategy. This paper is considered as an

xtension of the most recent BnB algorithm (DF). When thinking

f a parallel and/or a distributed approach of DF , the edit paths

an be considered as atomic tasks to be solved. Edit paths can

e dispatched and can be given to threads in order to divide the

ED problem into smaller problems. It is hard to estimate the

ime needed by threads to explore a sub-tree (i.e., to become idle).

ikewise, the number of CPUs and/or machines have to be adapted

o the amount and type of data that have to be analyzed. Some

xperiments in Section 5.5 illustrate this point and are followed

y a discussion.

. Proposal: parallel graph edit distance using a load balancing

trategy

In this section, an overview of our proposal is given. The main

bjectives of the approach lie in, first, making sure that all the

hreads have a work to do. Second, balancing the workload of the

hreads at run-time. Third, exploring the fruitful partial edit paths

f the search tree thanks to the cost estimation of lb(p) .

Generally speaking, our proposal is inspired by some ideas in

ao and Kumar (1987) and Neary and Cappello (2005) . A best-first

rocedure is performed before starting to decompose the search

ree (composed of edit paths) into sub-trees. The load balancing

rocedure occurs when any thread finishes all its assigned edit

aths. The algorithm terminates when all threads finish the ex-

loration of their assigned editpaths. Our algorithm, denoted by

46 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Fig. 2. The main steps of PDFS .

A

C

e

t

t

s

a

R

D

a

p

g

A

s

e

A

A

s

D

c

o

A

I

O

p

l

2

f

k

i

p
PDFS , consists of three main steps: Initialization-Decomposition-

ssignment, Branch-and-Bound and Load Balancing. Fig. 2 pictures

the whole steps of PDFS .

4.1. Initialization, decomposition and assignment

The objective of this step is twofold. First: dividing the problem

into sub-problems. Second, making sure, at the beginning of the

method, that all threads have an equivalent workload in terms of

number of edit paths and their difficulty.

Initialization Procedure. As in DF (Abu-Aisheh et al., 2015), this

phase consists of 3 steps, each of which aims at speeding up the

calculations.

First, the vertices and edges cost matrices (C v and C e) are

constructed, respectively. This step aims at getting rid of re-

calculating the distances between attributes when matching

vertices and edges of G 1 and G 2 .

Let G 1 = (V 1 , E 1 , μ1 , ξ1) and G 2 = (V 2 , E 2 , μ2 , ξ2) be two graphs

with V 1 = (u 1 , . . . , u n) and V 2 = (v 1 , . . . , v m

) . A vertices cost ma-

trix C v , whose dimension is (n + 2) X (m + 2) , is constructed as

follows:

 v =

c 1 , 1 ... c 1 ,κ c 1 ← ε ... ∞

...

...

c n, 1 ... c n,κ ∞ ... c n → ε

c ε→ 1 ... ∞ ∞ ... ∞

∞ ... c ε← κ ∞ ... ∞

where n is the number of vertices of G 1 and κ is the number of

vertices of G 2 .

Each element c i, j in the matrix C v corresponds to the cost of

assigning the i th vertex of the graph G 1 to the j th vertex of the

graph G 2 . The left upper corner of the matrix contains all possible

node substitutions while the right upper corner represents the cost

of all possible vertices insertions and deletions of vertices of G 1 ,

respectively. The left bottom corner contains all possible vertices

insertions and deletions of vertices of G 2 , respectively whereas the

bottom right corner elements cost is set to infinity which concerns

the substitution of ε − ε. Similarly, C e contains all the possible sub-

stitutions, deletions and insertions of edges of G 1 and G 2 . C e is con-

structed in the very same way as C v . The aforementioned matrices

C v and C e are used as an input of the following phase.

Second, the vertices of G 1 are sorted in order to start with

the most promising vertices in G 1 . BP is applied to establish the

initial edit path EP (Riesen & Bunke, 2009). Afterwards, the edit

operations of EP are sorted in ascending order of the matching

cost where EP = { u → v } ∀ u ∈ V ∪ { ε}. At last, from EP ,
sorted 1 sorted
ach u ∈ V 1 is inserted in sorted - V 1 . This operation helps in finding

he most promising vertices vi ∈ V 1 that will be matched first with

he unmatched vertices in V 2 to speed up the exploration of the

earch tree while searching for the optimal solution.

Third, a first upper bound (UB) is computed by BP algorithm

s it is relatively fast and it provides reasonable results, see

iesen and Bunke (2009) for more details.

ecomposition. Before starting the parallelism, a distribution

pproach is applied aiming at dispatching the workload or sub-

roblems among threads. For that purpose, N edit paths are first

enerated using A

∗ by the main thread and saved in the heap.

fterwards, the N partial edit paths are sorted as an ordered tree

tarting from the node whose lb (p) is minimum up to the most

xpensive one. Note that N is a parameter of PDFS .

ssignment. Let Q be the set of partial solutions outputted by

∗. Assigning partial solutions to parallel threads is equivalent to

olving the static load balancing problem stated in Section 2.3.1 .

ue to the complexity of the problem, we chose to avoid an exact

omputation of load balancing and we adopted an approximated

ne. Algorithm 1 depicts the strategy we have followed. Once the

lgorithm 1 Dispatch-Tasks.

nput: A set of partial edit paths Q generated by A

∗ and T threads.

utput: The local list OPEN of each thread T i

1: Q ← sortAscending(Q)

2: for T index ∈ T do

3: OP EN T index
← { φ}

4: end for

5: i =0 � a variable used for thread’s indices

6: for p ∈ Q do

7: index = i % | T |
8: OP EN T index

.addTask(p)

9: i ++

10: end for

11: Return OP EN T index
∀ index ∈ 1 , · · · , | T |

artial edit paths are sorted in the centralized heap (line 1), the

ocal list OPEN of each thread is initialized as an empty set (lines

–4). Each thread receives one partial solution at a time, starting

rom the most promising partial edit paths (line 8). The threads

eep taking edit paths in that way until there is no more edit path

n the centralized heap (lines 6–10).

Each thread maintains a local heap to keep the assigned edit

aths for exploring edit paths locally. Such an iterative way guar-

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 47

Fig. 3. Edge mappings based on their adjacent vertices and whether or not an edge between two vertices can be found.

a

t

4

t

o

S

d

S

p

s

fi

i

s

b

B

e

f

v

l

v

t

p

c

s

e

m

e

d

i

i

a

a

m

i

o

P

t

l

g

i

t

d

t

t

d

e

n

U

a

t

w

H

t

i

O

v

U

m

m

t

v

t

H

o

4

L

i

p

m

d

c

i

n

a

t

t

I

b

t

t

L

p

p

l

b

t
ntees the diversity of nodes difficulty that are associated to each

hread.

.2. Branch-and-bound method

In this section we explain the components of BnB that each

hread executes on its assigned partial edit paths. First, the rules

f selecting edit paths, branching and bounding are described.

econd, updating the upper bound and pruning the search tree are

etailed.

election Rule. A systematic evaluation of all possible solutions is

erformed without explicitly evaluating all of them. The solution

pace is organized as an ordered tree which is explored in a depth-

rst way. In depth-first search, each edit path is visited just before

ts children. In other words, when traversing the search tree, one

hould travel as deep as possible from node i to node j before

acktracking. At each step, the most promising child is chosen.

ranching Procedure. Initially each thread only has its assigned

ditpaths in its local heap set (OPEN) i.e., the set of the edit paths,

ound so far. The exploration starts with the first most promising

ertex u 1 in sorted - V 1 in order to generate the children of the se-

ected editpath. The children consist of substituting u 1 with all the

ertices of G 2 , in addition to the deletion of u 1 (i.e., u 1 ⇒ ε). Then,

he children are added to OPEN . Consequently, a minimum edit

ath (p min) is chosen to be explored by selecting the minimum

ost node (i.e., min (g(p) + h (p))) among the children of p min and

o on.

Starting from the second promising vertex u 2 in sorted - V 1 , the

dges of both G 1 and G 2 are handled. Edges of G 1 can be either

atched with edges of G 2 or deleted while edges of G 2 can be

ither inserted in G 1 or matched with edges in G 1 . However, the

ecision of whether an edge is inserted, substituted, or deleted

s done regarding the matching of their adjacent vertices. That

s, the neighborhood of edges dominates their matchings. Edges

re handled as follows: Let u i and u j ∈ V 1 be matched with v k
nd v z ∈ V 2 , respectively (i.e., u i → v k and u j → v z). Based on these

atchings. One of the following edge operations is selected:

• If ∃ e ij ∈ E 1 and ∃ e kz ∈ E 2 then e ij → e kz

• If ∃ e ij ∈ E 1 and �e kz ∈ E 2 then e ij → ε
• If �e ij ∈ E 1 and ∃ e kz ∈ E 2 then ε → e kz

The search for a better edit path continues through backtrack-

ng if p min equals φ. In this case, the next child of p min is tried

ut and so on (Fig. 3).

runing Procedure. As in DF , pruning, or bounding, is achieved

hanks to h (p), g (p) and an upper bound UB obtained at node

eaves. Formally, for a node p in the search tree, the sum

(p) + h (p) is taken into account and compared with UB . That is,

f g(p) + h (p) is less than UB then p can be explored. Otherwise,
he encountered p will be pruned from OPEN and a backtracking is

one looking for the next promising node and so on until finding

he best UB that represents the optimal solution of PDFS . Note

hat OPEN is a local search tree of each thread. This algorithm

iffers from A

∗ as at any time t , in the worst case, OPEN contains

xactly | V 1 |.| V 2 | elements and hence the memory consumption is

ot exhausted.

pper Bound Update. The best upper bound is globally shared by

ll threads (shared UB). When a thread finds a better upper bound,

he shared UB is updated (i.e ., a complete path found by a thread

hose cost is less than the current UB).

euristic. After comparing several heuristics h(p) from the litera-

ure, we selected the bipartite graph matching heuristic proposed

n Riesen and Bunke (2009) . The complexity of such a method is

 ({| V 1 | , | V 2 |} 3 + | E 1 | , | E 2 |} 3) . For each tree node p , the unmatched

ertices and edges are handled in a complete independent way.

nmatched vertices of G 1 and unmatched vertices of G 2 are

atched at best by solving a linear sum assignment problem. Un-

atched edges of both graphs are handled analogously. Obviously,

his procedure allows multiple substitutions involving the same

ertex or edge and, therefore, it possibly represents an invalid way

o edit the remaining part of G 1 into the remaining part of G 2 .

owever, the estimated cost certainly constitutes a lower bound

f the exact cost.

.3. Load balancing and communication

oad Measurement. Each thread i provides some information about

ts workload or weight index ω i . Obviously, the number of edit

aths in OPEN can be a workload index. However, this choice

ay not be accurate since BnB computations are irregular with

ifferent computational requirements. Several workload indices

an be adapted. One could think about h (p). h (p) can be hard to

nterpret, it can be small either because the p is close to the leaf

ode or because p is a very promising solution. To eliminate this

mbiguity, instead, one can count the number of vertices in G 1

hat have not been matched yet. This is done on each edit path in

he local heap. In our approach, we have selected the latter.

nitiation Rule. An initiation rule dictates when to initiate a load

alancing operation. Its invocation decision must appear when a

hread workload index ω i reaches a zero value that is to say if the

hread is idle .

oad Balancing Operation. In parallel BnB computations, each

rocess solves one or more subproblems depending on the decom-

osite procedure. In our problem, two threads are involved in the

oad balancing operation: Heavy and idle threads. When a thread

ecomes idle, the heaviest thread will be in charge of giving to

he idle thread some edit paths to explore. All the edit paths of

48 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Table 3

The characteristics of the GREC, Mutagenicity, Protein and PAH datasets.

Dataset GREC Mutagenicity Protein PAH

Size 4337 1100 660 484

Vertex labels x,y coordinates Chemical symbol Type and amino acid sequence None

Edge labels Line type Valence Type and length None

v ertices 11.5 30.3 32.6 20.7

edges 12.2 30.8 62.1 24.4

Max vertices 25 417 126 28

Max edges 30 112 146 34

Table 4

The cost functions and meta parameters of the datasets.

Dataset GREC Mutagenicity Protein PAH

τ vertex 90 11 11 3

τ edge 15 1.1 1 3

α 0.5 0.25 0.75 0.5

Vertex substitution function Extended Euclidean distance Dirac function Extended string edit distance 0

Edge substitution function Dirac function Dirac function Dirac function 0

Reference of cost functions Riesen and Bunke (2009) Riesen and Bunke (2009) Riesen and Bunke (2009) Gauzere, Brun, and Villemin (2012)

Table 5

Time constraints for accuracy evaluation in limited time.

Dataset GREC MUTA Protein PAH

C T (milliseconds) 400 500 400 55

t

w

t

g

h

t

t

e

F

f

d

o

(

m

τ
d

e

t

s

a

5

l

a

a

d

o

a

b

2

i

3 https://brunl01.users.greyc.fr/CHEMISTRY/index.html .
the heavy thread are ordered using their lb (p). The heavy thread

distributes the best edit paths between it and the idle thread. This

procedure guarantees the exploration of the best edit paths first

since each thread holds some promising edit paths.

Threads Communication. All threads share C e , C e , sorted - V 1 and

UB . Since all threads try to find a better UB , a memory coherence

protocol is required on the shared memory location of UB . When

two threads simultaneously try to update UB , a synchronization

process based on mutex is applied in order to make sure that only

one thread can access the resource at a given point in time.

5. Experiments

This section aims at evaluating the proposed contribution

through an experimental study that compares 9 methods in terms

of precision, execution time and classification rate on reference

datasets. We first describe the datasets, the methods that have

been studied and the protocol. Then, the results are presented and

discussed.

5.1. Datasets

To the best of our knowledge, few publicly available graphs

databases are dedicated to precise evaluation of graph matching

tasks. However, most of these datasets consist of synthetic graphs

that are not representative of PR problems concerning graph

matching under noise and distortion. We shed light on the IAM

graph repository which is a widely used repository dedicated to

a wide spectrum of tasks in pattern recognition and machine

learning (Riesen & Bunke, 2008). Moreover, it contains graphs of

both symbolic and numeric attributes which is not often the case

of other datasets. Consequently, the GED algorithms involved in

the experiments are applied to three different real world graph

datasets taken from the IAM repository (Riesen & Bunke, 2008)

(i.e., GREC, Mutagenicity (MUTA) and Protein datasets). Continuous

attributes on vertices and edges of GREC play an important role

in the matching process whereas MUTA is representative of GM

problems where graphs have only symbolic attributes. On the

other hand, the Protein database contains numeric attributes on

each vertex as well as a string sequence that is used to represent

the amino acid sequence. For the scalability experiment, the

subsets of GREC, MUTA and Protein, proposed in the repository

GDR4GED (Abu-Aisheh, Raveaux, & Ramel, 2015), were chosen. On
he other hand, for the classification experiment, the experiments

ere conducted on the train and test sets of each of them.

In addition to these datasets, a chemical dataset, called PAH,

aken from GREYCs Chemistry dataset repository, 3 was also inte-

rated in the experiments. This dataset is quite challenging since it

as no attributes on both vertices and edges. Table 3 summarizes

he characteristics of all the selected datasets.

These datasets have been chosen by carefully reviewing all

he publicly available datasets that have been used in the refer-

nce works mentioned in Section 3 (LETTER, GREC, COIL, Alkane,

INGERPRINT, PAH, MUTA, PROTEIN and AIDS to name the most

requent ones). On the basis of this review, a subset of these

atasets has been chosen in order to get a good representativeness

f the different graph features which can affect GED computation

size and labelling):

Each dataset has specific edit cost functions. Two non-negative

eta parameters are associated to GM: (τ vertex and τ edge) where

vertex denotes a vertex deletion or insertion costs whereas τ edge

enotes an edge deletion or insertion costs. A third meta param-

ter α is integrated to control whether the edit operation cost on

he vertices or on the edges is more important. Table 4 demon-

trates the cost functions of each of the included datasets as well

s their meta parameters.

.2. Studied methods

We compared PDFS to five other GED algorithms from the

iterature. From the related work, we chose two exact methods

nd three approximate methods. On the exact method side, A

∗

lgorithm applied to GED problem (Riesen et al., 2007) is a foun-

ation work. It is the most well-known exact method and it is

ften used to evaluate the accuracy of approximate methods. DF is

lso a depth-first GED that has been recently published and that

eats A

∗ in terms of running time and precision (Abu-Aisheh et al.,

015). Moreover, a naive parallel PDFS , referred to as naive-PDFS ,

s implemented and added to the list of exact methods. The basis

https://brunl01.users.greyc.fr/CHEMISTRY/index.html

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 49

Table 6

The effect of the number of threads on the performance of PDFS .

Method # best found solutions # optimal solutions Idle Time over CPU Time

PDFS-2T 67 48 1.7 ∗10 −5

PDFS-4T 79 54 9.5 ∗10 −5

PDFS-8T 83 66 2.8 ∗10 −4

PDFS-16T 92 69 7.7 ∗10 −4

PDFS-32T 94 69 0.011

PDFS-64T 95 68 0.043

PDFS-128T 98 66 0.169

Fig. 4. Time-deviation score: left (# Threads), right (# Edit Paths).

o

c

b

a

b

a

n

t

m

t

m

b

t

a

b

F

s

a

b

5

e

i

p

S

e

t

b

w

5

o

{

m

e

p

a

g

g

m

5

T

s

(

w

m

m

d

t

f naive-PDFS is similar to PDFS . However, naive-PDFS does not in-

lude neither the assignment phase (see Section 4.1) nor the load

alancing phase (see Section 4.3). Instead of the assignment phase,

 random assignment is applied. naive-PDFS does not include a

alancing strategy which means that if a thread T i finished its

ssigned nodes, it would be idle during the rest of the execution of

aive-PDFS . On the approximate method side, we can distinguish

hree families of methods, tree-based methods, assignment-based

ethods and set-based methods. For the tree-based methods, the

runcated version of A

∗ (i.e., BS - x) was chosen where x refers to

aximum number of open edit paths. Among the assignment-

ased methods, we selected BP . In Riesen and Bunke (2009) , au-

hors demonstrated that BP is a good compromise between speed

nd accuracy. Finally, we picked a set-based method. An approach

ased on the Hausdorff matching, denoted by H , was proposed in

ischer et al. (2015) . All these methods cover a good range of GED

olvers and return a vertex to vertex matching, except H , as well

s a distance between two graphs G 1 and G 2 except the lower

ound GED which only returns a distance between two graphs.

.3. Environment

PDFS and naive - PDFS were implemented using Java threads. The

valuation of both algorithms was conducted on a 24-core Intel

5 processor 2.10 GHz, 16GB memory. In PDFS , the partial edit

aths are sorted in the centralized heap OPEN , as mentioned in

ection 4.1 . Each thread takes one edit path from OPEN and the

dit path is then deleted from OPEN . The CPU only needs to move

o the next memory location so the spatial locality is exploited at

est to reduce cache misses. For sequential algorithms, evaluations

ere conducted on one core.
.4. Protocol

In this section, the experimental protocol is presented and the

bjectives of the experiment are described.

Let S be a graph dataset consisting of k graphs, S =
 g 1 , g 2 , . . . , g k } . Let M = M e ∪ M a be the set of all the GED

ethods listed in Section 5.2 , with M e = { A ∗, DF , PDFS } the set of

xact methods and M a = { BP, BS-1,BS-10,BS-100, H } the set of ap-

roximate methods (where x in BS was set to 1, 10 and 100). Given

 method m ∈ M , we computed all the pairwise comparisons d (g i ,

 j)
m , where d (g i , g j)

m is the value returned by method m on the

raph pair (g i , g j) within certain time and memory limits.

Two types of experiments were carried out scalability experi-

ent and classification experiment.

.4.1. Scalability experiment under time constraints

In the scalability experiment, several metrics were included:

he number of best found solutions and the number of optimal

olutions. Moreover, a projection of p on a two-dimensional space

 R

2) is achieved by using speed-score and deviation-score features

here speed and deviation are two concurrent criteria to be

inimized. First, for each database, the mean deviation and the

ean time is derived as follows:

ev
p

k
=

1

m × m

m ∑

i =1

m ∑

j=1

dev (g i , g j)
p ∀ p ∈ P ∀ k ∈ # subsets (1)

ime
p

k
=

1

m × m

m ∑

i =1

m ∑

j=1

time (G i , G j)
p and (i, j) ∈ [[1 , m]] 2

∀ k ∈ # subsets (2)

50 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Table 7

The effect of the number of edit paths on the performance of PDFS .

Method # best found solutions # optimal solutions Idle Time over CPU Time

PDFS-1st Floor 82 53 0.067

PDFS-100 EP 85 66 0.067

PDFS-250 EP 85 41 0.053

PDFS-500 EP 82 41 0.023

PDFS-10 0 0 EP 83 40 0.018

Table 8

The effect of the number of edit paths on the performance of PDFS when executed on

the GREC dataset.

Method # optimal solutions Mean CPU Time (ms) Mean Variance (ms)

naive-PDFS 63 4,792,4 4 4 36,1157.6

PDFS 91 7,275,476 49,880.62

Fig. 5. Number of best found solution under big time constraint.

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 51

Fig. 6. Number of optimal solutions under big time constraint.

w

G

b

b

d

t

w

m

a

A

A

b

n

s

t

a

t

e

r

t

u

i

S

o

s

s

a

n

a
here dev (G i , G j) is the deviation of each d (G i , G j) and time (G i ,

 j) is the run time of each d (G i , G j). To obtain comparable results

etween databases, mean deviations and times are normalized

etween 0 and 1 as follows:

eviation_score
m =

1

subsets

∑

S∈ subsets

dev
m

S
max_dev S

(3)

ime_score
m =

1

subsets

∑

S∈ subsets

time
m

S
max_time S

(4)

here max _ de v S and max _ time S denote respectively the maximal

ean deviation and the maximal mean execution time obtained

mong all the methods M on dataset S .

All these metrics have been proposed in Abu-

isheh et al. (2015) . This experiment was decomposed of 2 tests:

ccuracy Test. The aim was to illustrate the error committed

y approximated methods over exact methods. In an ideal case,
o time constraint (C T) should be imposed to reach the optimal

olution. Due to the large number of considered matchings and

he exponential complexity of the tested algorithms, we allowed

 maximum C T of 300 s . This time constraint was large enough

o let the methods search deeply into the solution space and to

nsure that many nodes will be explored. The key idea was to

each the optimality, whenever it is possible, or at least to get

o the Graal (i.e., the optimal solution) as close as possible. This

se case is necessary when it is important to accurately compare

mages represented by graphs even if the execution time is long.

peed Test. The goal was to evaluate the accuracy of exact meth-

ds against approximate methods when time matters. That is to

ay in a context of very limited time. Thus, for each dataset, we

elect the slowest graph comparison using an approximate method

mong BP and H as a first time constraint. Unlike BP and H, BS is

ot included as it is a tree-search algorithm which could output

 solution even under a limited C . Mathematically saying, C is
T T

52 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Fig. 7. Time-deviation score under large time constraint.

C

5

m

t

s

t

n

s

w

e

s

r

t
defined as follows:

 T = max
m,i, j

{ time m

(g i , g j) } (5)

where m ∈ M s / BS , (i, j) ∈ [[1, k]] 2 and time is a function returning

the running time of method m for a given graph comparison. This

way ensures that BP and H could solve any instance. When the

time limit is over, the best solution found so far is outputted by BS

as well as the exact GED methods. So time and memory limits play

a crucial role in our experiments since they impact such methods.

In Table 5 , we display the time limits used for each dataset.

This case study is representative of a classification stage where

many distances have to be quickly computed.
.4.2. Classification experiment

This part of the experiments aimed at showing the perfor-

ance of the included methods in classifying the graphs of the

est set of each of GREC, MUTA and Protein. PAH is not included

ince we do not have the classes of the test graphs.

Two metrics are proposed: Average time (i.e., the time needed

o classify each test graph) and classification rate using 1 nearest

eighbor (1-NN). The values of C T were the same ones used in the

peed test of the aforementioned experiment (speed test).

In all the experiments (i.e., scalability and classification), C M

as set to 1GB. Among all the aforementioned methods, we

xpected A

∗ to violate C M

specially when graphs get larger. In a

mall C T context, the number of threads in PDFS was set to 3. The

eason is that since C T was quite small, we did not want to lose

ime decomposing the workload among a big number of threads.

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 53

Fig. 8. Number of best found solution under small time constraint.

M

w

5

b

c

M

w

a

fl

2

t

t

n

t

a

5

d

h

r

r

i

5

t

a

|

m

m

d

h
oreover, because of the complexity of the calculation of lb , it

as removed from each of BS, A

∗, DF and PDFS

.5. Parameters

We study the effect of increasing the number of threads T on

oth accuracy and speed of naive-PDFS and PDFS . This test was

arried out using a 24-core CPU. T is varied from 2 to 128 threads.

oreover, the effect of several values of N , described in Section 4.1 ,

ere studied. Five values of N were chosen: −1, 100, 250, 500

nd 10 0 0, where N = −1 represents the decomposition of the first

oor in the search tree with all possible branches, N = 100 and

50 moderately perform load balancing while N = 500 and 10 0 0 is

he exhaustive case where threads have much less time dedicated

o load balancing since each thread will be assigned sufficient

umber of works before the parallelism starts. We expected PDFS

o perform better when increasing N up to a threshold where the

ccuracy of the algorithm is degraded.
.6. Results

In this section, the results are demonstrated along with their

iscussions. We conducted experiments on the involved datasets,

owever, for the part of parameters selection, we only show the

esults on GREC-20 (Abu-Aisheh et al., 2015) since this dataset is

epresentative of the other datasets. Time unit is always expressed

n milliseconds.

.6.1. Number of threads

Table 6 displays the effect of the number of threads | T | on

he performance of PDFS . In Table 6 , CPU time is the time spent

t working by all the threads. One may notice that increasing

 T | resulted in increasing the chance to find a better solution,

ore optimal solutions and a smaller deviation as we explored

ore nodes in a parallel manner. Thus, the overall running time

ecreased (see Fig. 4). Since the machine on which we ran this test

as a 24-core processor, there was a saturation when increasing

54 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

Fig. 9. Time-deviation score under small time constraint.

w

b

n

5

c

w

m

s

T

t

t

t
| T |. For example, on 128 threads the deviation became bigger (see

Fig. 4). On a 24-core machine, 32 and 64 threads had got the

best results. In addition, increasing the number of threads also

increased the load balancing.

Based on the aforementioned results, | T | is set to 64. For

naive-PDFS , the same experiment was conducted. At the end, | T |

was set to 128.

5.6.2. Number of edit paths

Table 7 demonstrates the effect of the number of initial edit

paths N on the performance of PDFS . One can remark that N

equals 100 was the best choice in terms of the number of best

found solutions, number of optimal solutions and deviation. Even

though N equals 100 remarkably spent much more time on load

balancing, it was still 2.3 times more precise than N equals 10 0 0.

The latter represented the least precise results (see Fig. 4) which
as due to the time spent in dispatching the work among threads

efore the BnB step started. In the rest of the experiments, the

umber of initial edit paths is set to 100.

For naive-PDFS, N equals 100 also demonstrated the best results.

.6.3. Comparing PDFS with naive-PDFS

In this section we compare both PDFS and naive-PDFS . For

omparison needs, both algorithms were executed on 128 threads

hich is slightly in favor of naive-PDFS .

The results in Table 8 show that PDFS beat naive-PDFS with 28

ore optimal solutions. PDFS is equipped with a load balancing

cheme which allows the workload variance to be minimized.

he workload variance is defined as the deviation between the

hreads’ workloads and the average workload of all threads at

ime t . Reducing the variance is important to make sure that all

hreads have approximately the same amount of work. One can

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 55

Table 9

Methods included in the classification experiments.

Acronym Details

DF - UB − LB DF without upper bound and with h(p) = 0.

DF - UB − LB DF without UB and with h(p) = lb2 .

DF - UB − LB DF with an initial UB equals to BP , h(p) = 0.

DF-UB-LB DF with an initial UB equals to BP and lb2

PDFS Parallel GED with the best parameters of DF

A ∗ − LB the A ∗ algorithm with lb2

A ∗ the A ∗ algorithm without lb2

BS-1, BS-10 and BS-100 Beam Search with OPEN size = 1, 10 and 100, respectively

BP The bipartite GM

H The Hausdorff algorithm.

Table 10

Classification on GREC and Protein. The best exact and approxi-

mate methods are marked in bold style. Note that the response

time is the average time needed to classify each test graph.

GREC Protein

R Time (ms) R Time (ms)

DF - UB - LB 0.98 171,401.54 0.44 128,469.57

DF - UB - L B 0.98 163,979.45 0.52 124,361.61

DF - UB - LB 0.98 140,675.00 0.40 147,371.86

DF - UB - LB 0.98 140,525.48 0.52 145,779.68

PDFS-UB-LB 0.98 99,850.79 0.52 80,038.33

A ∗ − LB 0.89 358,158.76 0.29 1,065,106.80

A ∗ 0.53 222,045.94 0.26 194,021.88

BS1 0.98 69,236.34 0.24 129,571.76

BS10 0.94 83,928.21 0.26 139,294.88

BS100 0.58 83,928.20 0.26 141,265.41

BP 0.98 62,294.60 0.52 59,041.84

H 0.96 63,563.74 0.43 71,990.62

Table 11

Classification on MUTA. The best exact and

approximate methods are marked in bold

style.

MUTA

R Time (ms)

DF - UB - LB 0.70089 1,139,134.29

PDFS - UB - LB 0.70 760,861.51

A ∗ − LB 0.4574 856,793.020

BS-1 0.55 1,015,688.00

BS-10 0.55 1,256,793.02

BS-100 0.55 1,383,838.66

BP 0.70 528,546.64

H 0.58 525,610.25

a

w

t

o

5

w

L

s

o

t

a

g

B

f

B

f

a

g

g

v

i

b

a

o

i

o

t

d

F

w

s

o

t

M

f

m

a

e

S

s

a

o

o

t

a

(

s

M

5

p

d

A

t

O

r

b

c

o

v

a
lso observe that PDFS was fully parallel where the CPU time

as doubled compared to naive-PDFS . In fact, in naive-PDFS , some

hreads became idle since they finished they assigned works while

ther threads continued to explore their assigned edit paths.

.6.4. Comparing methods under constraints

In this section, we compare the state-of-the-art methods as

ell as PDFS under small and large time constraints.

arge Time Constraint. Regarding the number of best found

olutions and the number of optimal solutions, PDFS always

utperformed DF on GREC, MUTA, Protein and PAH, see Figs. 5–7 .

On MUTA, the deviation of BP was 20%; this fact confirms

hat the more complex the graphs the less accurate the answer

chieved by BP , see Fig. 7 (b). BP considers only local, rather than

lobal, edge structure during the optimization process (Riesen &

unke, 2009) and so when graphs get larger, its solution becomes

ar from the exact one. Despite the out-performance of PDFS over

P, H and DF , it did not outperform BS in terms of number of best
ound solutions, see Fig. 5 (b). The major differences between these

lgorithms are the search space and the Vertices-Sorting strate-

ies which are adapted in PDFS and not in BS . Since BP did not

ive a good estimation on MUTA, it was irrelevant when sorting

ertices of G 1 resulting in the exploration of misleading nodes

n the search tree. Since the graphs of MUTA are relatively large,

acktracking nodes took time. However, the difference between BS

nd PDFS in terms of deviation was only 0.1%.

On Protein-30, BS-100 was superior to PDFS in terms of number

f best found solutions with 50 better solutions. However, this

s not the case of a bigger dataset like Protein-40 where BS-100

utputted unfeasible solutions because of the tremendous size of

he search tree and thus PDFS outperformed it. On average, on all

atabases and among all methods, PDFS got the best deviation, see

ig. 7 .

Exploring the search tree in a parallel way has an advantage

hen we are also interested in having more optimal solutions,

ee Fig. 6 . Results, in Fig. 6 , demonstrated that the number of

ptimal solutions found by PDFS was always equal or greater than

he number of optimal solutions found by DF and A

∗, except on

UTA-20 where A

∗ outperformed it. For instance, on GREC, PDFS

ound 9.6% more optimal solutions when compared to DF and 10%

ore optimal solutions on PAH. Note that without time constraints

ll the exact GED algorithms must find all the optimal solutions

xcept A

∗ that has memory bottleneck.

mall Time Constraint. Concerning the number of best found

olutions, even under a small C T , PDFS outperformed DF where the

verage difference between DF and PDFS was: 10% on GREC, 16%

n MUTA, 15% on Protein and 11% on PAH, see Fig. 8 .

A

∗ got the highest deviation rates (around 30% on GREC, 73%

n MUTA, 86% on Protein and 51.94% on PAH) since it did not have

ime to output feasible solutions. Despite the fact that PDFS was

mong the slowest algorithms, it obtained the lowest deviation

0% on both GREC and Protein, 5% on MUTA and 6% on PAH),

ee Fig. 9 . BS-100 outputted unfeasible solutions on MUTA-50,

UTA-60, MUTA-70, MUTA-MIX and Protein due to the small C T .

.6.5. Classification tests

Table 9 shows the methods included in the classification ex-

eriments. Different versions of DF and A

∗ were tested on each

ataset taking into account different combinations of lb and UB .

fterwards, the best combination is selected to be compared with

he other methods.

Table 10 shows the classification results on GREC and Protein.

n GREC, DF with all its variants obtained the same classification

ate as BP (i.e., 0.985) even the one without upper and lower

ounds (i.e., DF - UB − LB). That shows that DF can also be used to

lassify graphs even without being obliged to wait for the final,

r optimal, solution. DF-UB-LB was the fastest compared to all the

ariants. This fact shows the importance of UB and LB to make the

lgorithm faster. Accordingly, and since PDFS is an extension of DF ,

56 Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57

w

T

a

t

a

a

t

r

b

s

E

c

B

m

t

t

a

l

a

f

R

A

A

A

B

B

B

C

C

C
C

D

D

D

F

F

F

G

B
not all the variants of PDFS are tested. That is, only PDFS-UB-LB

has been included in the tests. PDFS-UB-LB was 29% faster than

DF-UB-LB . Despite the fact that H was the worst algorithm when

evaluating its distances, it was among the algorithms whose

classification rate were high. One can see that, on GREC, H beat

both BS-10 and BS-100 . A

∗ − LB obtained better classification rate

than A

∗. A

∗’ lower bound is time consuming and consequently the

number of unfeasible solutions was high.

On Protein, one can see a different behavior (see Table 10).

DF-UB - LB was the fastest while DF-UB-LB was the slowest. That is

because of the time consumed to calculate distances using the cost

functions of Protein. Thus, as on GREC, PDFS-UB- LB was included

in the tests. Despite the slowness of DF-UB-LB , it was also the best

algorithm in terms of classification rate. PDFS-UB- LB was 36% faster

than DF-UB- LB . Even though BS took relatively enough time to

classify graphs (compared to DF), it was way far from the results

obtained by DF. A

∗ was not able to find feasible solutions of each

pair of graphs. That was not the case of all the variants of DF as

they were always able to output feasible solutions before halting.

Computing lb(p) and a first upper bound UB was time con-

suming on such a large database. Since C T of MUTA was set to

500 ms, we kept only DF - UB − LB and A

∗ − LB . Results showed

that DF - UB − LB was twice as slow as BP , however, both of them

succeeded in finding the best classification rate (i.e., approximately

0.70). PDFS - UB − LB was also able to find the same classification

rate and was 40% faster than DF - UB − LB .

From all the aforementioned results, one can conclude that

even if the deviation of DF and PDFS was better when compared

to BP , it did not have an effect on the classification rate. In other

words, for such an application, one does not need to have a very

accurate algorithm in order to obtain a good classification rate

(Tables 10 and 11).

6. Conclusion and perspectives

In the present paper, we have considered the problem of GED

computation for pattern recognition. GED is a powerful and flexible

paradigm that has been used in different applications in PR. The

exact algorithm A

∗, presented in the literature suffers from high

memory consumption and thus is too costly to match large graphs.

In this paper, we propose a parallel exact GED algorithm, referred

to as PDFS , which is considered as an extension of a recent GED

method based on depth-first tree search (Abu-Aisheh et al., 2015).

The algorithm in Abu-Aisheh et al. (2015) , referred to as DF , does

not exhaust memory as the space complexity in the worst case is

quadratic in the number of vertices i.e., O (| V 1 | × | V 2 |). In this paper,

we speed up the computation of DF by adopting a load balancing

strategy. Each thread gets one or more partial edit path and all

threads solve their assigned edit paths in a fully parallel manner.

A work stealing or balancing process is performed whenever a

thread finishes all its assigned threads. Moreover, synchronization

is applied in order to ensure upper bound coherence.

In the experiments part, we proposed to evaluate both exact

and approximate GED approaches under large and small time

constraints, on 4 publicly available datasets (GREC, MUTA, Pro-

tein and PAH). Such constraints are devoted to accuracy and

speed tests, respectively. Small time constraints ensured that the

approximate methods BP and H were able to find a solution.

Experiments demonstrated the importance of the load balancing

strategy when compared to a naive method that does not include

neither static nor dynamic load balancing. Under small and large

time constraints, PDFS proved to have the minimum deviation,

the maximum number of best found solutions and the maxi-

mum number of optimal solutions. However, since our goal was

to elaborate methods dealing with rich and complex attributed

graphs, BS was slightly superior to PDFS in terms of deviation
hen evaluated on the MUTA dataset under large time constraint.

his could be improved by learning the best sorting strategy for

 given database. Results also indicated that there is always a

rade-off between deviation and running time. In other words,

pproximate methods are fast, however, they are not as accurate

s exact methods. On the other hand, DF and PDFS take longer

ime but lead to better results (except on MUTA). By limiting the

un-time, our exact method provides (sub)optimal solutions and

ecomes an efficient upper bound approximation of GED with the

ame classification rate found by the best approximate method.

ven though DF and so PDFS were more accurate than PDFS , their

lassification rate was as good as the best approximate GED (i.e.,

P). On this basis, one could ask: What is the benefit of having a

ore precise algorithm in an a classification context?

A future promising work could be to make PDFS more scalable

o have more precise and thus more optimal solutions under large

ime constraints. This could be achieved by extending PDFS from

 single machine algorithm to a multi-machines one. Moreover,

earning to sort vertices of G 1 based on the structure and char-

cteristics of graphs is another promising perspective towards a

aster exact algorithm.

eferences

bu-Aisheh, Z. , Raveaux, R. , & Ramel, J. (2015). A graph database repository and
performance evaluation metrics for graph edit distance. In Graph-based repre-

sentations in pattern recognition - GbRPR 2015 (pp. 138–147) .
bu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., & Martineau, P. (2015). An exact graph edit

distance algorithm for solving pattern recognition problems,. (pp. 271–278).

llen, R. , Cinque, L. , Tanimoto, S. , Shapiro, L. , & Yasuda, D. (1997). A parallel algo-
rithm for graph matching and its maspar implementation. IEEE Transactions on

Parallel and Distributed Systems, 8 (5), 490–501 .
Almohamad, H. A. , & Duffuaa, S. O. (1993). A linear programming approach for the

weighted graph matching problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 15 (5), 522–525 .

Bertsekas, D. P. , & Tsitsiklis, J. N. (1997). Parallel and distributed computation: Numer-

ical methods . Athena Scientific .
Bougleux, S. , Brun, L. , Carletti, V. , Foggia, P. , Gaüzère, B. , & Vento, M. (2017). Graph

edit distance as a quadratic assignment problem. Pattern Recognition Letters, 87 ,
38–46 .

oukedjar, A. , Lalami, M. , & El-Baz, D. (2012). Parallel branch and bound on
a cpu-gpu system. In Parallel, distributed and network-based processing (PDP)

(pp. 392–398) .

run, L. (2012). Relationships between graph edit distance and maximal common
structural subgraph.

unke, H. (1997). On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters, 18 , 689–694 .

hakroun, I. , & Melab, N. (2013). Operator-level gpu-accelerated branch and bound
algorithms. ICCS : 18 .

hung, C.-S. , Flynn, J. , & Sang, J. (2012). Parallelization of a branch and bound algo-

rithm on multicore systems. Journal of Software Engineering and Applications, 5 ,
12–18 .

ormen, T. H. , et al. (2009). Introduction to algorithms (3rd). The MIT Press .
ortés, X. , & Serratosa, F. (2015). Learning graph-matching edit-costs based on the

optimality of the Oracle’s node correspondences. Pattern Recognition Letters, 56 ,
22–29 .

eng, L. , & Yu, D. (2014). Deep learning: Methods and applications. Foundations and

Trends in Signal Processing, 7 , 197–387 .
orta, I. , Leon, C. , & Rodriguez, C. (2003). A comparison between mpi and openmp

branch-and-bound skeletons. In Parallel and distributed processing symposium,
2003. Proceedings. International (pp. 66–73) .

rozdowski, M. (2009). Scheduling for parallel processing (1st). Springer Publishing
Company, Incorporated .

ankhauser, S. , Riesen, K. , Bunke, H. , & Dickinson, P. J. (2012). Suboptimal graph iso-

morphism using bipartite matching. IJPRAI, 26 (6) .
errer, M. , Serratosa, F. , & Riesen, K. (2015). A first step towards exact graph edit

distance using bipartite graph matching. In Graph-based representations in pat-
tern recognition - 10th IAPR-TC-15 international workshop (pp. 77–86) .

ischer, A. , Suen, C. Y. , Frinken, V. , Riesen, K. , & Bunke, H. (2013). A fast matching
algorithm for graph-based handwriting recognition. Graph-Based Representations

in Pattern Recognition , 194–203 .
Fischer, A. , Suen, C. Y. , Frinken, V. , Riesen, K. , & Bunke, H. (2015). Approximation

of graph edit distance based on Hausdorff matching. Pattern Recognition, 48 (2),

331–343 .
auzere, B. , Brun, L. , & Villemin, D. (2012). Two new graphs kernels in chemoinfor-

matics. Pattern Recognition Letters, 33 (15), 2038–2047 .
unke, H. , & Allermann, G. (1983). Inexact graph matching for structural pattern

recognition. Pattern Recognition Letters, 1 , 245–253 .

http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0020

Z. Abu-Aisheh et al. / Expert Systems With Applications 94 (2018) 41–57 57

J

L

L

N

N

N

R

R

R

R

R

R

R

S

S

T

V
C

X

Z
ustice, D. , & Hero, A. (2006). A binary linear programming formulation of the graph
edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 ,

1200–1214 .
(1990). In V. Kumar, P. S. Gopalakrishnan, & L. N. Kanal (Eds.), Parallel algorithms for

machine intelligence and vision . New York, NY, USA: Springer-Verlag New York,
Inc. .

eordeanu, M. , Hebert, M. , & Sukthankar, R. (2009). An integer projected fixed point
method for graph matching and map inference. In Proceedings neural information

processing systems (pp. 1114–1122) .

iu, Z. , & Qiao, H. (2014). GNCCP - graduated nonconvexity and concavity procedure.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 , 1258–1267 .

euhaus, M. , Riesen, K. , & Bunke, H. (2006). Fast suboptimal algorithms for the
computation of graph edit distance. In Proceedings of 11th international work-

shop on structural and syntactic pattern recognition: 28 (pp. 163–172) .
eary, M. O. , & Cappello, P. R. (2005). Advanced eager scheduling for Java-based

adaptive parallel computing. Concurrency - Practice and Experience, 17 , 797–819 .

euhaus, M. , & Bunke, H. (2007). Bridging the gap between graph edit distance and
kernel machines. Machine Perception and Artificial Intelligence, 68 , 17–61 .

ao, V. N. , & Kumar, V. (1987). Parallel depth-first search on multiprocessors part I:
implementation. International Journal on Parallel Programming, 16(6) , 479–499 .

iesen, K. , & Bunke, H. (2008). Iam graph database repository for graph based
pattern recognition and machine learning. Pattern Recognition Letters, 5342 ,

287–297. .

iesen, K. , & Bunke, H. (2009). Approximate graph edit distance computation by
means of bipartite graph matching. Image and Vision Computing, 28 , 950–959 .
iesen, K. (2015). Structural pattern recognition with graph edit distance - approx-
imation algorithms and applications. Advances in Computer Vision and Pattern

Recognition . Springer .
iesen, K. , & Bunke, H. (2014). Improving approximate graph edit distance by means

of a greedy swap strategy. In ICISP (pp. 314–321) .
iesen, K., Fankhauser, S., & Bunke, H. (2007). Speeding up graph edit distance com-

putation with a bipartite heuristic. MLG . URL http://dblp.uni-trier.de/db/conf/
mlg/mlg2007.html#RiesenFB07

iesen, K. , Fischer, A. , & Bunke, H. (2014). Improving approximate graph edit dis-

tance using genetic algorithms. In SSSPR14 (pp. 63–72) .
anfeliu, A. , & Fu, K. (1983). A distance measure between attributed relational

graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cyber-
netics, 13 , 353–362 .

erratosa, F. (2015). Speeding up fast bipartite graph matching through a new cost
matrix. IJPRAI, 29 (2) .

sai, W.-h. , Member, S. , & Fu, K.-s. (1979). Pattern deformational model and Bayes

error-correcting recognition system. IEEE Transactions on Systems, Man, and Cy-
bernetics, 9 , 745–756 .

an Loan, C. (1992). Computational frameworks for the fast Fourier transform .
hristmas, W. J. , Kittler, J. , & Petrou, M. (1995). Structural matching in computer

vision using probabilistic relaxation. IEEE Transactions on PAMI, 2 , 749–764 .
u, C. , & Lau, F. C. (1997). Load balancing in parallel computers: Theory and practice .

Kluwer Academic Publishers .

eng, Z. , Tung, A. K. H. , Wang, J. , Feng, J. , & Zhou, L. (2009). Comparing stars: On ap-
proximating graph edit distance. Proceedings of the VLDB Endowment, 2 , 25–36 .

http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0032
http://dblp.uni-trier.de/db/conf/mlg/mlg2007.html#RiesenFB07
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30725-X/sbref0041

	A parallel graph edit distance algorithm
	1 Introduction
	2 Problem statements
	2.1 Graph edit distance problem
	2.2 From GED problem to load balancing problem
	2.3 Load balancing problem
	2.3.1 Static load balancing
	2.3.2 Dynamic load balancing

	3 Related work
	3.1 State-of-the-art of graph edit distance
	3.1.1 Exact graph edit distance approaches
	3.1.2 Approximate graph edit distance approaches
	3.1.3 Synthesis

	3.2 State-of-the-art of parallel branch-and-bound algorithms
	3.2.1 Regular exploration of the search space
	3.2.2 Irregular exploration of the search space
	3.2.3 Synthesis

	4 Proposal: parallel graph edit distance using a load balancing strategy
	4.1 Initialization, decomposition and assignment
	4.2 Branch-and-bound method
	4.3 Load balancing and communication

	5 Experiments
	5.1 Datasets
	5.2 Studied methods
	5.3 Environment
	5.4 Protocol
	5.4.1 Scalability experiment under time constraints
	5.4.2 Classification experiment

	5.5 Parameters
	5.6 Results
	5.6.1 Number of threads
	5.6.2 Number of edit paths
	5.6.3 Comparing PDFS with naive-PDFS
	5.6.4 Comparing methods under constraints
	5.6.5 Classification tests

	6 Conclusion and perspectives
	 References

