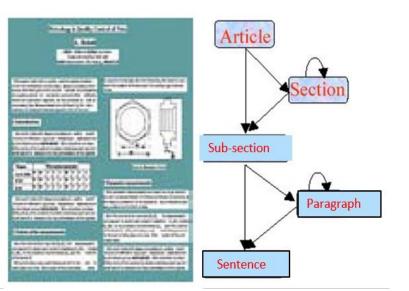
IDAKS 2018

Semantic & interaction: the meeting points between Document Image Analysis and Computer Vision

Jean-Yves RAMEL

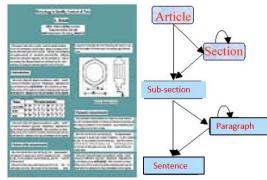
October 2018

LABORATOIRE D'INFORMATIQUE FONDAMENTALE ET APPLIQUÉE DE TOURS



Starting point...

Differences and similarities between CV and DIA problems?



Starting point...

More and more similarity between CV and DIA problems

- "New" goals in CV
 - Scene and Image understanding (VQA, VRD, ...)
 - More genericity by using machine learning & interaction
- Reformulation: associating semantical labels to images (semantical meta-data)
 - Objects (face, people, cat, car, ...) detection (segmentation) and recognition (label)
 - Analysis of Spatial and Temporal relations between objects or subparts of objects → sematic description of the content, behavior, pose and emotion recognition, object tracking, ...
 - Using the numerous toolboxes (tensorflow, Detectron, ...)
- This goal is targeted since many years in DIA
 - Analysis of spatial and temporal relations between elements is mandatory in OCR, layout analysis, line drawing analysis, ...
 - Extraction of elements of contents (EoC) at different levels: lexical, syntactical, semantical
 - Knowledge representations for the analysis of relation between them (dictionaries, models of language, ...)

Starting point...

In this new context...

What are the good directions?

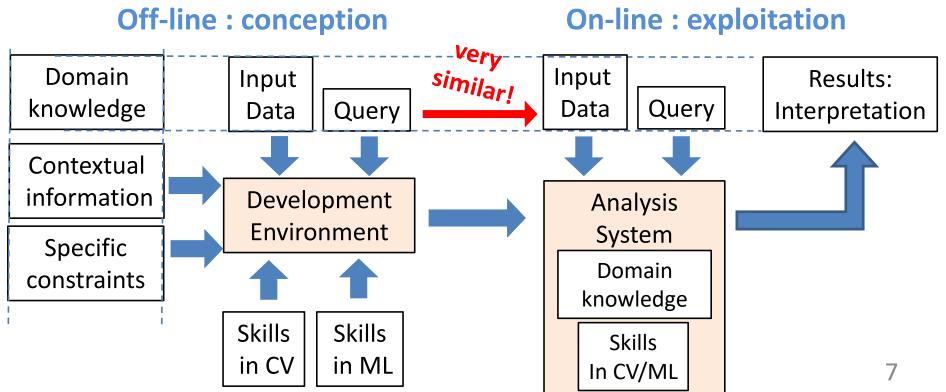
- CNN → A low level vision of real world (The data are considered as a set of pixels)
- The learning algorithms only consider annotated data to fix the parameters
- The human → a higher level of vision of the real world (looks for a semantical segmentation of the data)
- Contextual information should be integrated such as recently recommended by Yann Lecun in a French conference (RFIAP2018)
- Future systems have to work at a higher level (semantic)
- Future systems have to be more transparent (interaction) and adaptable (plasticity)

Systems and methods taxonomy

Could we position the DIA and CV methods or systems into categories ? Is it CNN compatible ?

Systems and methods taxonomy

- Categories of DIA and CV methods and systems
 - Static systems (no learning / no interaction)
 - Handcrafted bottom-up or top/down or hybrid approaches (CV & DIA)
 - Adaptable methods (off-line data driven and interaction)
 - Toolboxes for IP, statistical PR and Machine Learning (CV)
 - Syntactical and structural pattern recognition (DIA)
 - Adaptive methods (on-line data driven and interaction)
 - Robustness → plasticity → User interaction, user feedbacks
 - Robustness → plasticity → Incrementality, active and on-line learning,
 - New constraints (real-time, understandability of parameters and decisions, ...)
- Different goals / deadlocks inside different fields
 - Computer Vision and Image Analysis (matrix, vectors, datasets)
 - Pattern Recognition and Machine Learning (matrix, vectors, datasets)
 - Data and Knowledge Representation (models, architectures, graphs, ...)
 - Understanding Visualization, CHI, ...

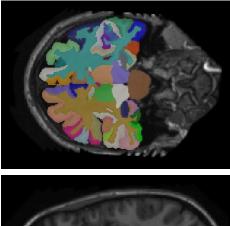

February Part 1

Fee Part 2

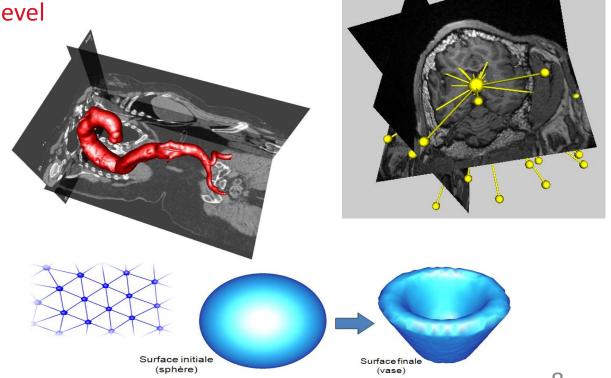
Part 3

Static handcrafted systems

- Inside the system, the designer encodes:
 - All the algorithms for signature extraction and EoC recognition
 - Using the a priori knowledge about the data
 - Regarding the known future inputs (query, images)
 - Without separations between algorithms, levels, models, ...

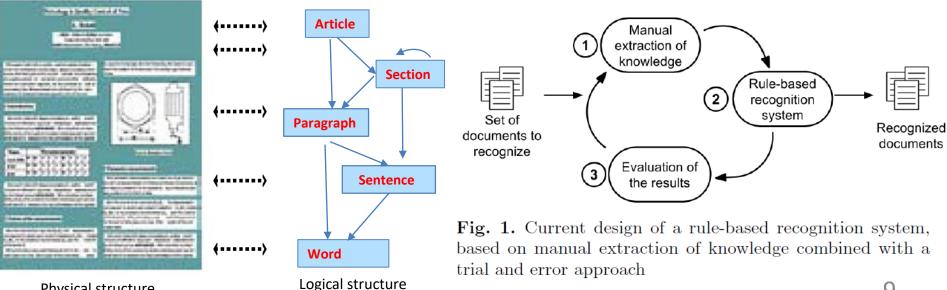


Static systems


In CV, lot's of methods for segmentation and object detection

- Global approaches (atlas and scene models)
- Local approaches (active contour and shape model)

➔ lexical/syntactical level

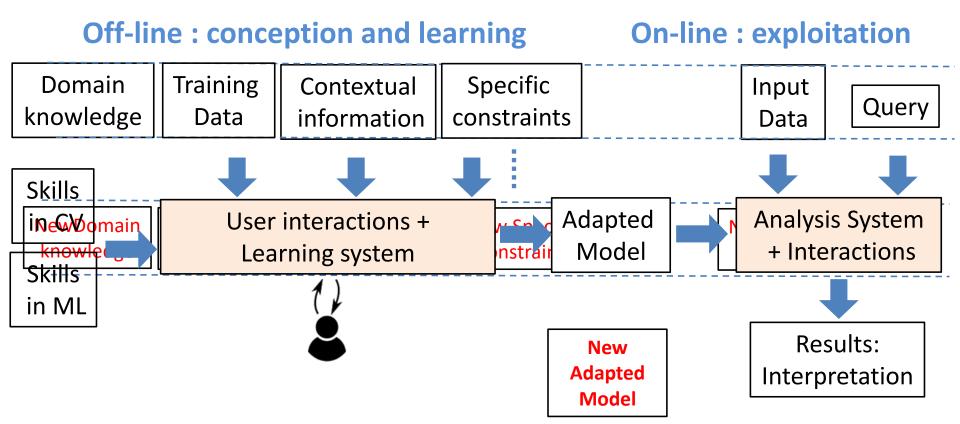


Static systems

More separation between levels in DIA systems (layout analysis)?

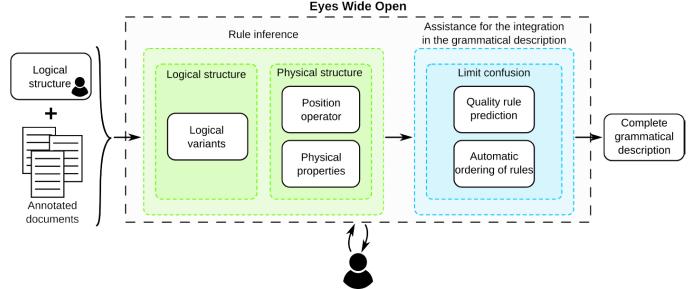
Two kind of structures have been identified by researchers in DIA:

- The logical structure \rightarrow the generic one corresponding to a priori knowledge about the content of the document (scene model)
- The physical structure \rightarrow the analysed instance corresponding to the extracted EoC inside • the image, each one associated to descriptive features (size, position, number of sub-patterns, ...)
- Layout analysis tries to recognize these 2 structures (EoC + relationships identification)
- The analysis of the EoC is usually achieved based on a rule based system defined through a grammar (static one).


Physical structure

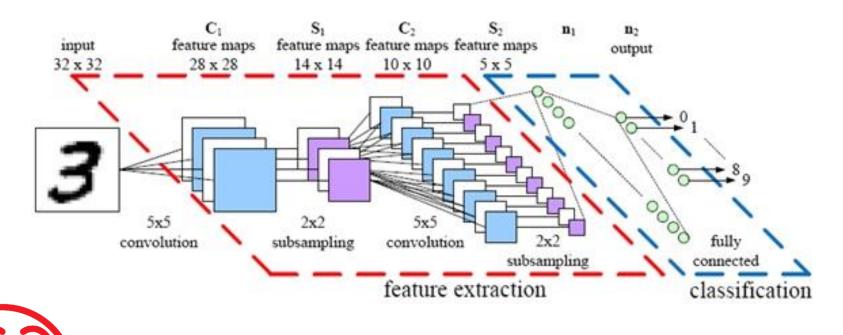
Eyes Wide Open: an interactive learning method for the design of rule-based systems. Cérès Carton, Aurélie Lemaitre, Bertrand Coüasnon.

- Inside the system, the designer/user tune what ?
 - at which level (lexical, syntactical, semantical)
 - in which part of the system (off-line or on-line) ?



- Inside the system,
 - Adaptable models that can be learned or user-defined

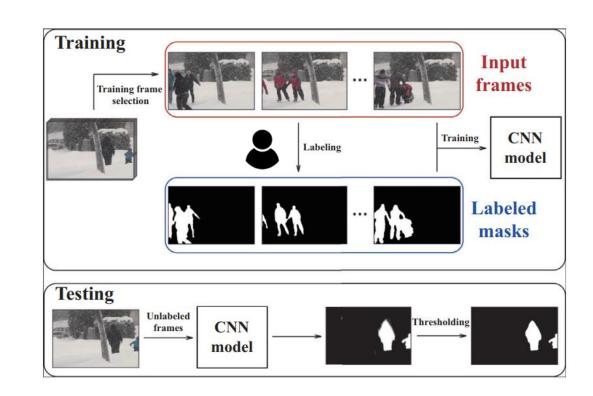
Interactive learning for the design of rule-based systems (off-line, syntactical level)


- Interactive building / learning of a complete grammatical description of a set of documents
- Main steps:
 - Automatic and exhaustive analysis of an annotated data set (logical structure)
 - The rules are built progressively using a clustering algorithm
 - The interaction with the **grammar writer** brings semantic in the automatically inferred structures.
 - Evaluation of the pertinence of the built grammar

- Advantages of the syntactical methods \rightarrow expressiveness, understandable, introduction of user knowledge
- Without their main drawbacks → time needed to adapt the system to a new type of document

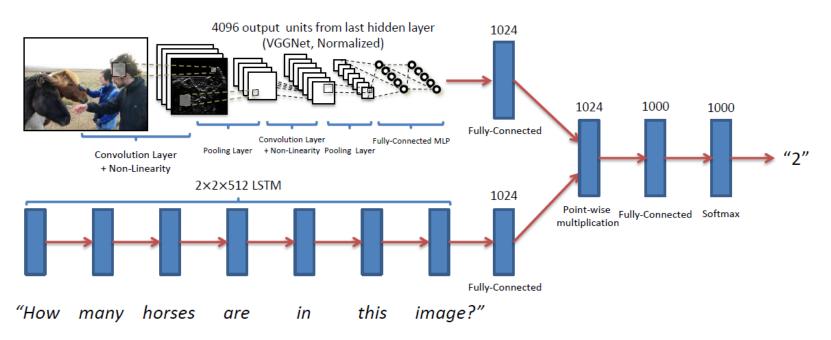
Eyes Wide Open: an interactive learning method for the design of rule-based systems. Cérès Carton, Aurélie Lemaitre, Bertrand Coüasnon.

- Inside Deep Learning system,
 - Adaptable semantic models that can be learned or user-defined ?



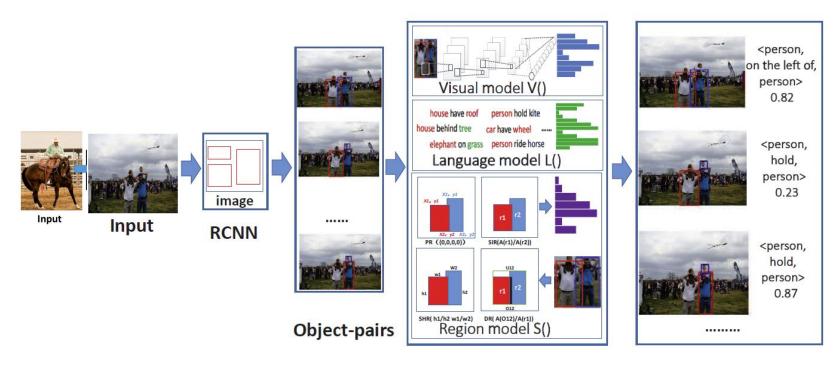
As I am not specialist of CNN, I wonder Can we do more than automatic features selection (lexical level, off-line)?

Interactive (deep) learning → Only off-line and at the lexical level ?


- The users can also interact with the training data (off-line)
- Transfer learning (off-line): multi-task learning, featuriser, ...
- Curriculum learning (off-line)

...

Semantic Models for Visual Question Answering


- VGGNet to encode the image content
- LSTM to encode the question
- Question and images features are transformed into a common space and pass through a FCL to select the best answers
- Is it really a semantic model?

VQA: Visual Question Answering Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Semantic Models for Visual Relationship Detection

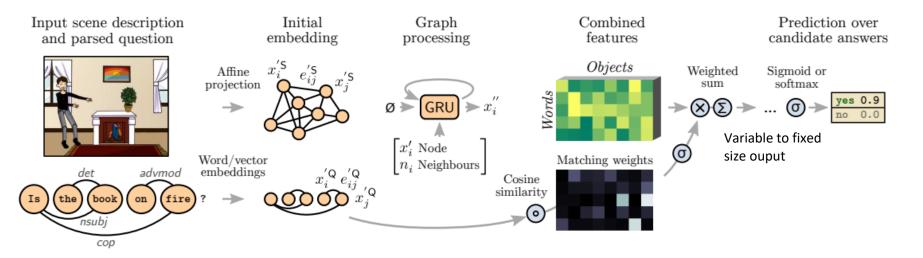
- Introduction of a more clear separation between different models/levels
 - Visual model (CNN features)
 - Language model (dictionaries of n-grams)
 - Region model (spatial relation: distance, size, position, ...)

More structural ML models

- Proposition of a Dynamic-structured Semantic Propagation Network
- A semantic hierarchy (neuron graph network) → Model of the world (manually built?)
- CNN features are propagated into a graph for hierarchical pixel-wise recognition

ADE20k (150)

17

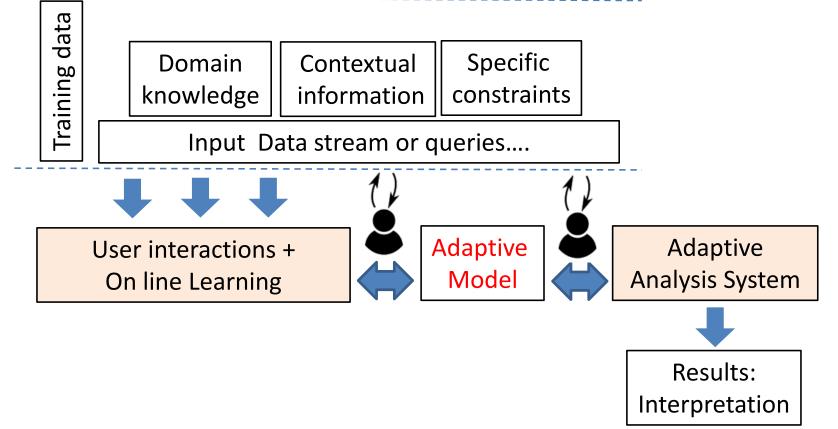

- Sub-graphs activation during training/testing (feed-forward and back propagation)
- Use of a Hierarchical description (document structures)

person-things table outdoor dining table -things Semantic neuron - rider table-things coffee table motorcyclist Activated semantic dense semanticvehicle-things things neuron enhanced neural armchair chai block furniture-things stool swivel chair couch electronic-things potted plant screen-things Deactivated indooi Dynamic pixelsemantic neuron -thinds kitchen-things bowi crt screen wise prediction ConvNet (no computation) entitý cup layer food-things apple hot-doa plate orange textile-stuff adible fruit iving-stuff banana pillow indoor DSSPN stuff curtain things floor-stuff carpet -stuff floor-wood light furniture-stuff stuff Groundtruth concepts outdoor-stuff light-stuff chandelier D lamp Negative concepts eiling-stuff ceiling-tile windowpane ceiling-other. Deactivated semantic neuron plant-stuff animal-things window-stuff window-other With groundtruth concept structure-stuff outdoor wall-brick grass wall-stuff -stuff wall-other tree plant-other fence

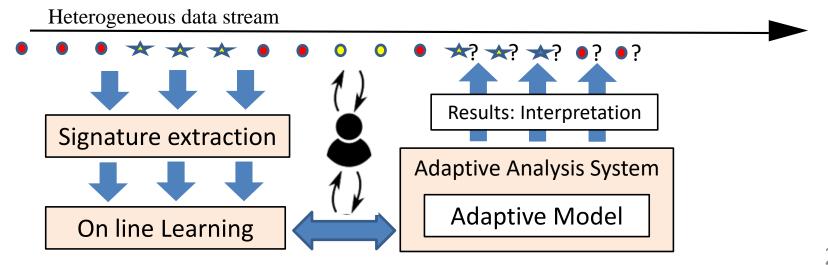
Dynamic-structured Semantic Propagation Network Xiaodan Liang Hongfei Zhou Eric Xing arXiv:1803.06067v1 [cs.CV] 16 Mar 2018

More structural representations (graphs)

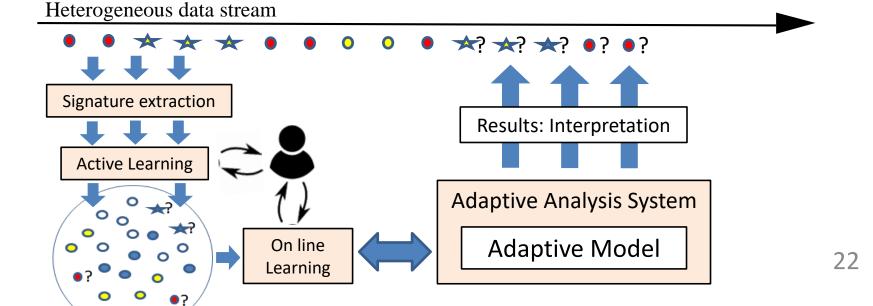
- A scene graph with attributed nodes (objects) and edges (spatial relationships)
- A question graph with node (words) and edges (type of syntactic)
- A recurrent unit (GRU) transform the 2 graphs into word and object features
- Both features are concatenated pairwise (inside a matrix)
- A final classifier predicts scores over a fixed set of candidate answers
- One step toward sub-graph matching ?


- Inside the system,
 - At which level is the adaptation?
 - At what time (on-line or off-line)?
 - Names of techniques?

- Inside the system,
 - Adaptive models are updated on-line
 - Adaptation are supervised by the system or by the user


On-line : learning and exploitation

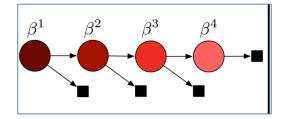
20


1. Online learning

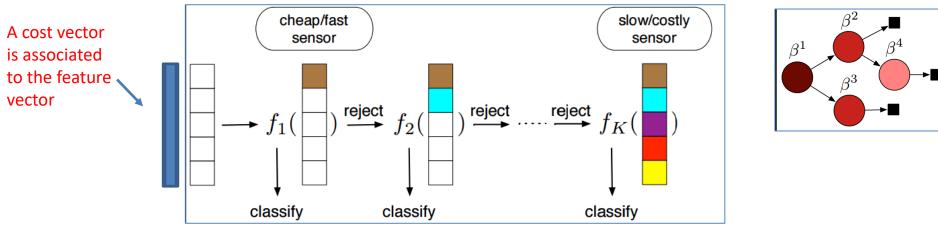
- Requirements for online evolving systems are:
 - Incremental learning from few initial learning data
 - Each data sample must be processed only once
 - Adapt models according to new data without requiring all the original data
 - Preserve previously acquired knowledge (no catastrophic forgetting)
 - Memory and computing time must be limited
 - System learning can be interrupted and its quality shouldn't be altered

2. On-line active learning

- A classifier can achieve equivalent performance with only part of the learning data, if those data have been correctly chosen.
- The learning system itself will choose which data samples will be used
- Need method to evaluate the classifier confidence during recognition (Sampling decision)
 - Ask the users to decide when to query the label of the sample
- Decide the label of the new samples (Semi supervised learning)
 - Ask the users to label data samples for which the system is likely to make a recognition error and which will be very interesting for the evolving classifier learning



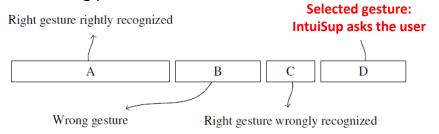
3. Budgeted Learning & incremental classification


- New systems need problem resolution under time and memory constraints •
- One possible solution to explore is **budgeted learning & classification**

Main ideas

- At test time, compute & use costly features only if necessary (utility scores)
- Definition of new learning and classification ٠ strategies / architectures cost sensitive ones \rightarrow

Example of architecture



Supervised sequential classification under budget constraints K Trapeznikov, V Saligrama - Artificial Intelligence and Statistics, 2013 Supervised Machine Learning Under Test-Time Resource Constraints: A Trade-off Between Accuracy and Cost. Zhixiang Xu Washington University in St. ETDs Thesis. Louis 2014

On line active learning in DIA

Online and Active supervision of a recognition system

- Context = customized gesture command
- Goal = Optimizing user-system interaction in this cross-learning context → stream sampling
- Method = Evolving fuzzy classifier + IntuiSup
- Combining implicit and explicit supervision
- The implicit supervision mechanism takes advantage of user next action to implicitly label the majority of correctly classified data
- The **explicit supervision** mechanism makes it possible to learn from complex data samples that are hard to recognize, and from which it is very beneficial to learn
- The Evolving Sampling by Uncertainty (ESU) algorithm triggers user interactions using the classifier confidence measure as input.
- Possibility to increase the interaction rate at the beginning of system use and during concept drifts to fasten system learning process.

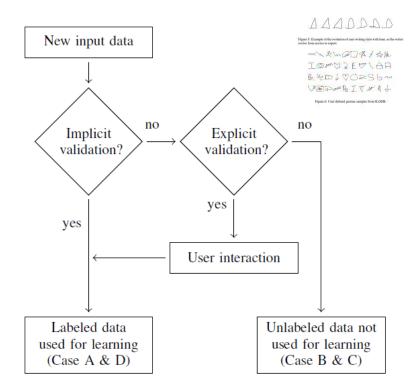
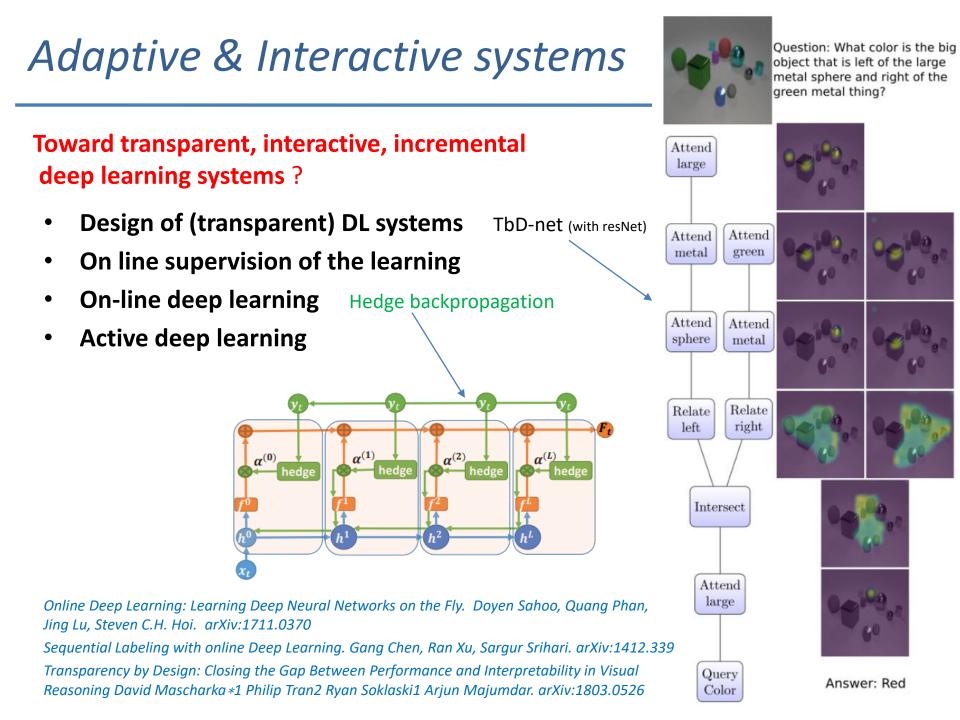
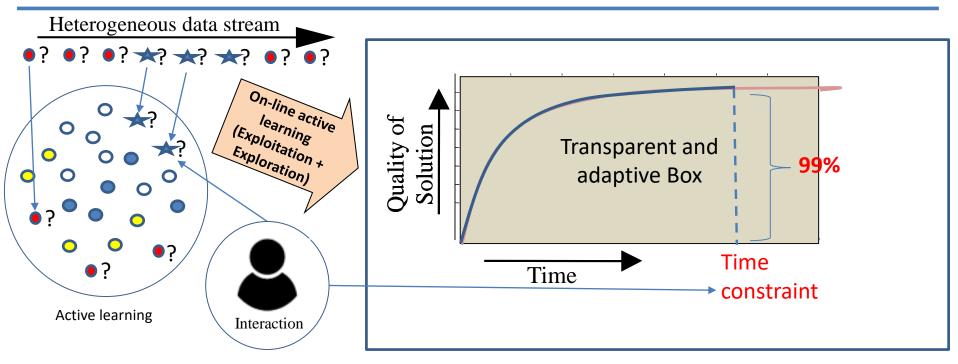



Figure 4: Online active learning supervision process.

Online Active Supervision of an Evolving Classifier for Customized-Gesture-Command Learning. Manuel Bouillon, Eric Anquetil. Neurocomputing, 2017



Conclusion (Version 1)

- Categories of methods and systems
 - Adapte
 Bott
 Adaptal
 Adaptal
 - Toolk 32×32 = 28×28×6 = 1176 10×10×6 ×16=2400 120 =1024 = 4704 10×10×6 ×16=9600 120
 - Syntactical and structural pattern recognition (DIA)
 - Adaptive methods (on-line data driven and interaction)
 - Robustness → plasticity → User interaction, user feedbacks
 - Robustness → plasticity → Incrementality, active and on-line learning,
 - New constraints (real-time, understandability of parameters and decisions, ...)
- Different goals / deadlocks inside different fields
 - Computer Vision and Image Analysis (matrix, vectors, datasets)
 - Pattern Recognition and Machine Learning (matrix, vectors, datasets)
 - Data and Knowledge Representation (models, architectures, graphs, ...)
 - − Perception ⇔ Understanding, Visualization, CHI, …

Conclusion (version 2)

- What should we remember?
 - Toward robust adaptive system design instead of mono-dataset accurate system
 - Adapted & static methods \rightarrow a lot of operational toolboxes in CV, PR, ML, ...
 - Adaptable methods \rightarrow Off-line learning (from datasets) and from human interaction
 - − Adaptive, incremental, interactive systems → Human supervision, active learning
 - Time and memory constraints
 Anytime, budgeted & distributed systems
 - My keywords → Active, Budgeted, Interactive, Incremental but less sequential more dynamic (perceptive cycles, saccades ?)

Thanks

The Workshop > Important dates

Dates:

- GBR 2019: 19-21th June 2019
- Regular paper submission: 12th December 2018
- Notification of acceptance: 1st February 2019
- Camera ready due: 15th March 2019
- Early Registration: 15th March 2019