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Abstract In this paper, we present a new dynamic classi-
fier design based on a set of one-class independent SVM for
image data stream categorization. Dynamic or continuous
learning and classification has been recently investigated to
deal with different situations, like online learning of fixed
concepts, learning in non-stationary environments (concept
drift) or learning from imbalanced data. Most of solutions
are not able to deal at the same time with many of these
specificities. Particularly, adding new concepts, merging or
splitting concepts are most of the time considered as less
important and are consequently less studied, whereas they
present a high interest for stream-based document image
classification. To deal with that kind of data, we explore a
learning and classification scheme based on one-class SVM
classifiers that we call mOC-iSVM (multi-one-class incre-
mental SVM). Even if one-class classifiers are suffering from
a lack of discriminative power, they have, as a counterpart,
a lot of interesting properties coming from their indepen-
dent modeling. The experiments presented in the paper show
the theoretical feasibility on different benchmarks consider-
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ing addition of new classes. Experiments also demonstrate
that the mOC-iSVM model can be efficiently used for tasks
dedicated to documents classification (by image quality and
image content) in a context of streams, handlingmany typical
scenarii for concepts extension, drift, split and merge.
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1 Introduction

As a result of the rapid expansion of Big Data, many com-
panies, public organisms, and libraries are rethinking the
traditional approach for digitization, access, and manage-
ment of their huge pools of information corresponding to
document streams that cannot anymore be manually pro-
cessed or verified [1]. Beyond political considerations, the
commitment taken by the firm Google and more recently by
other leaders of the IT world (Microsoft, Yahoo, and Ama-
zon) brings very diverse reactions associated with economic
but also scientific challenges. There is an emergency to digi-
tize the written inheritance, to protect original versions, and
to satisfy the increasing needs for consultation, distribution
but also enrichment of these resources. Massive digitization
and long-term data preservation are new challenges that raise
new scientific questions relative to efficient quality controls
and automatic content recognition during digitization pro-
cesses [2].

So as to make those large new datasets available for
consultation and uses, new technologies for intelligent acqui-
sition and content enrichment must be invented. Google’s
offensive and the European reaction show how this societal
question is important for the double point of view of data
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conservation and knowledge dissemination.1 In this context,
the DIGIDOC2 project was focused on the stage of docu-
ment image acquisition to improve and simplify their later
use (archiving, text recognition, documents indexing, etc.).
The costs of digitization and the fragility of documents of
old collections make practically impossible a second digi-
tization. Consequently, it is crucial to improve the quality
of digitization according to either the visual appearance of
images (color appearance, resolution, contrasts, etc.) or the
later uses and processing (OCR transcription, visualization,
preservation, etc.). By considering both the uses of digitized
documents and the specificity of their content, the DIGIDOC
project aimed at creating a new intelligent digitizing environ-
ment.

Our contribution, in this context, is to propose a dynamic
classification system for content and quality recognition that
could be embedded into a scanner dedicated to document
streamdigitization.Classification into data streams is a recent
and challenging issue [40], and notmuchwork has been done
on this topic in document analysis community [3,26,39]. The
proposed systemhere is based on an adaptation of themethod
proposed in [46]. A set of independent one-class SVMs are
used to improve their recognition efficiency according to new
incoming images. The learning scheme has been extended
to take into account user interactions considering that goals
can change over the time: For example, the user can simply
validate a digitalization or decide to do it again. He can also
decide to create a new category of content when necessary,
to suppress an outdated class, and finally to split or merge
two or more classes that share similar descriptions.

In the domain of dynamic classification, two approaches
dominate the literature: batch-incremental methods that
gather examples in batches to train models and instance-
incremental methods that learn from each example when it
arrives. Most of papers in the literature choose one of these
approaches without any clear justification. In the field of
dynamic document classification, our proposition is the only
one that proposes both online and batch mode to train the
models.

In Sect. 2, we present the state of the art of dynamic doc-
ument classification and how our proposition is going one
step forward. Sect. 3 details our contribution based on multi-
one-class incremental SVM, the novelties regarding learning
schemes and the validation on theoretical benchmarks in
Sect. 4. Section 5 details the integration of such method for
stream-based document content and quality recognition and
its experimental validation. Finally, Sect. 6 is discussing time

1 Europeana Project: http://www.europeana.eu/. Gallica Project: http:
//gallica.bnf.fr/. NYPL Digital Collection: http://digitalcollections.
nypl.org/.
2 (ANR-10-CORD-0020)—CONTenus et INTeractions (CONTINT)
http://digidoc.labri.fr.

consumption and general discussions are presented in the
concluding Sect. 7.

2 Dynamic classification of documents

In the following sections, we use the terms class to design
a group of characteristics logically grouped together and the
term concept to refer to a class of elements that share the same
properties and have something in common. The concept also
refers to a more abstract or semantic reality compared to the
notion of class.

2.1 Document streams are no more static…

One of the most difficult problems with supervised clas-
sification raises the difficulty to model the concepts to be
identified (as part of different classes), since they are highly
dependent on somehidden contexts.Consequently, any infor-
mation about the number of concepts, their structure and their
description should ideally be totally well-known beforehand.
Of course, this is far frombeing possible butmost often, a pri-
ori or arbitrary knowledge is injected in the learning scheme
to simplify the task andmake itmore accurate. This is the rea-
son why many supervised classification tasks are done under
the assumption that the concepts are fixed and known before
learning (this is also the case for the recent “deep learners”).

It is only very recently that a great attention has been paid
on content classification in the context of data streams where
the concepts can change over the time [9,29]. Indeed, for
many real processes, data classification is not so simple, even
in a supervised mode. Even if the concepts can remain stable
from a semantic point of view, representative examples in the
stream (and thus apparent probability density function) can
change over the time.

Inversely, it is also quite frequent that the concepts change
over time (this phenomenon is called concept drift) [33–35].
The other common situations can be explicitly mentioned
here as addition of new concepts, fusion or splitting, exten-
sion and deletion of concepts. These phenomena could occur
because of lack of initial expertise, changes in final goals or
final needs. They can especially occur while processing doc-
ument image streams. For these situations, the users should
have the possibility to define their own classes of documents
with adapted digitization protocols and decide to change
them during the use to take care of new situations.

In all such cases, it is mandatory to update dynamically
the class models used for the classification. The system has
also to take directly advantage (in an incremental way) of
past experiences. These elements have been quite exten-
sively analyzed in the literature, especially in the field of
adaptive classifiers dealing with online and/or incremental
learning [19,41,43,44].
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In document images area, three important surveys on doc-
ument classification can bementioned here: [3,4,6], but none
of them are presenting real progress in the field of dynamic
classification and learning. Chen in [3] gives a very complete
vision on each stage of document processing and learn-
ing. Chen presents the need for “incrementally update class
models” but does not give any further analysis. Baharudin
in [4] provides a review of the theory and methods of docu-
ment classification and text mining, showing the advantage
and disadvantage of many methods of supervised learning.
This review focuses only on the situations where all cat-
egories are predefined and cannot be dynamically created.
Recently, Singh in [6] has presented a new review includ-
ing semi-supervised and non-supervised approaches, but still
dedicated to an “automatic classification of documents in pre-
defined categories.” Most of techniques presented in these
surveys are only contributions in terms of data re-processing
and re-learning for dynamic classification.

Conversely, another way to deal with an efficient adapta-
tion to the context is to use dynamic classification systems
able to learn through time and uses. Some specific scenarii
of this scientific challenge have been studied in the literature
of machine learning [11,17,59]. The study of the state of
the art shows that the notions related to incremental learning
or classification remain quite ambiguous, dealing with many
criteria, alternatelywith datamanagement (online, batch, off-
line), with models (adaptation, addition) or with concepts. In
any cases, more or less significant constraints exist on the
learning procedure guided by old and new knowledge. For
instance, online learning is a mechanism that should process
its inputs example by example in order of arrival, ideally,
without keeping the entire training dataset in memory, but
only a nearest sequence of dataset. Then depending on stud-
ies, concepts can remain fixed, or change, and new concept
can be added or not.

Here, we intend to classify the different approaches of
dynamic learning so as to show their behavior toward data
and concept management in the context of document images
classification. We propose to structure these approaches
in two main parts: the first is dedicated to incrementality
for stream-based data processing (in stationary and non-
stationary environments) and the second to the news trends
relative to dynamic multi-purpose classification for docu-
ment images.

2.2 Incrementality for stream-based data processing

Stationary environments Many approaches dedicated to
stream processing are based on an online learning proce-
dure. In such situations, incremental learning means that
the system is able to improve/enrich its modeling with
new incoming data with a strict hypothesis of constancy of
number of concepts/classes and stationarity of their prob-

ability density functions. Some propositions coming from
the machine learning community based on variety of classi-
fiers [7–12,15,16] have been adapted to deal with document
images, like [13] or [14]. Song [13] adapts a SVM method
that has been proposed in [7,15,16]. Thismethod replaces the
classical learning function of SVM, by an exceeding-margin
technique. Themain idea is to checkwhether newdata exceed
the margin or not defined by the actual SVM model.

Incremental learning terminology can also be used at con-
cept or class level. In the field of machine learning, Polikar
proposed in [17] a definition corresponding to these criteria:
An incremental learning procedure should be able to learn
additional information from new data and should not require
access to the original data. It should preserve previously
acquired knowledge (it should not suffer from catastrophic
forgetting), and be able to learn new classes while they are
introduced with new data. This last point increases a lot the
difficulty of incremental learning when the number of con-
cepts is changing. Indeed, it has a high impact on the structure
of classical classifiers with their learning algorithms. Repre-
sentative works on this topic are [18,19] based on ARTMAP
(Adaptive Resonance Theory); [5,20] based on SOM (Seft
Organization Maps); [21,22] based on FIS (Fuzzy Inference
System); and [17,23,24] based on ensemble of classifiers.
For these approaches, the key idea is to model a new class
by adding a new prototype or new classifier, when new
examples are far enough from all existing classes. In the doc-
ument classification area, there are very few research papers
falling under this specific axis.We canmention [25] based on
SOM, [26] based on k-NN, [27] based on ensemble learning.
Hamza in [25] extends the idea of IGNG (Incremental Grow-
ing Neural Gas, a neuronal classifier) proposed by Prudent
in [5], for invoice document classification. Bouguelia in [26]
proposed to solve both image classification and zone classifi-
cation by using a very simple incremental k-NN.New classes
are added by keeping elements and associated labels that
are too far from existing training samples of known classes.
Finally, Ristin in [27] proposed a variant of Random Forests
where the decision nodes are based on Nearest Class Mean
(NCM) classification.

Non-stationary environments Learning from non-
stationary environment and concept drift problems represent
the ability of a system to auto-adjust the class models to the
modification of learnt concepts that can evolve over the time.
This drift implies a modification in the probability density
function that represents the concept. It can either correspond
to an extension of the concept, either a reduction or a “trans-
lation” whichmechanically entails old parts of the concept to
be forgotten. Consequently, the plasticity/stability dilemma
must be the heart of a well-adapted solution and forces to
consider either explicit or implicit detection of changes. To
reach such plasticity, most of existing methods are working
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on a selection of examples to be used for each new training
step. This can be done with a sliding window as in [28–30]
by keeping a fixed number of newest instances. In such situa-
tion, plasticity is high, but stability is low: It is impossible to
keep track of old concepts. It can also be done by weighting
examples as in [31–33]. By extension, approaches based on
ensemble of classifiers can either create new classifiers for
each new dataset or delete oldest one by a pruning classi-
fiers approach as in [34–36]. In the document analysis field,
we can mention two main works: Nattee in [38] proposed an
online classification of journal title pages based on the Win-
now algorithm [28] (sliding windows approach) and Salles
in [39] integrates a “temporal weighting function” (weight-
ing examples approach) in a classification system dedicated
to document images collected from digital libraries.

2.3 News trends relative to dynamic multi-purpose
classification for document images

More recently, the combination between incremental learn-
ing and concept drift has been studied. Elwell in [40] and [41]
combined incremental learning (with Learn++ [17]) and
pruning classifier approach for concept drift. Bouillon in [42]
also introduces decremental learning into FIS with incre-
mental learning ability based on a sliding window. But no
more exploration about the ability of extending, contracting,
merging or splitting concepts has been precisely studied in
dynamic learning, especially in the area of document classi-
fication.

The main difficulties for classifier dealing both with the
number of concepts and the evolutions of the concepts are
due to rigid architecture in terms of number of concepts and
interdependency between parameters. Consequently, when a
concept is changing, all parameters have to be adapted. This
needs many representative examples, which are not really
available when dealing with data streams. Today the most
efficient approaches are dealing with sets of interdependent
classifiers (potentially redundant) which makes the success
of ensemble methods.

This brief state of the art shows the lack of efficient solu-
tions dedicated to stream-based document images including
combinations between incremental learning and concept
evolution. Our objective here is to propose an original
contribution to online/batch document classification. The
proposition lies on the introduction of independent classi-
fiers (one-class classifiers), each of them being specialized
on a specific task: content recognition and quality evaluation.
The development of multi-one-class classifiers associated
with a dynamic learning procedure has led to very promis-
ing results for document stream processing. The following
sections make the demonstration of their accuracies.

3 Solution for dynamic classification of documents:
the multi-one-class incremental SVM classifier

Introduction to the mOC-iSVM As discussed above, one of
the major problems with classifiers dealing with concept
evolution (both the number of concepts and concepts them-
selves) is the need for adapting many (all) parameters that
are most often interdependent or redundant. Most of actual
approaches of machine learning integrate complex proce-
dures and structures, with many interdependent parameters,
especially because they rely on discriminant approaches,
which make the modifications inside the concept representa-
tion space quite difficult. Simplifying this inter-dependency
leads naturally to one-class classifiers that only use posi-
tive data considering a unique class to build their model.
These approaches are less studied since they are known to be
less accurate than discriminative ones. However, they also
have a huge potential such as insensibility to imbalanced
data, rejection process to detect new concepts or ambiguities
(and thus potential merging of concepts), multi-class label-
ing, and individual feature space. Those elements, key for
our research field, convinced us to develop our classification
scheme based on one-class approach. Precisely, we decided
to work with one-class SVMs because the principle of vec-
tor supports selection allows to handle nicely incremental
learning [43,44], at the same time with a summary of the
data representing concepts. The potential of one-class prin-
ciple gives to the classifier a high ability to share, split, and
merge information with successive models of the concepts.
We explore here these possibilities lying on the definition of
generic procedures for managing the learning data and the
evolution of the concepts. These procedures have shown a
great potential through experiments realized on real images
from the DIGIDOC project and have proved their efficiency
for classifying document images in streams.

Our proposed approach, called mOC-iSVM (multi-one-
class incremental SVM), is composed by a set of one-class
SVMs, each one modeling a concept. The basic generic
proposition has been introduced in [46] with only batch
learning. It has been experimented on to two simple sce-
narii: incremental learning of fixed concepts and addition of
new concepts. Here, our contribution lies on the extension of
the learning procedure that gives to the classifier more flex-
ibility to process both online and batch data, and to handle
new more complex scenarii like splitting or merging con-
cepts interacting with the user’s decision. Let’s remind here
the main principles of the approach.

Principle of one-class SVM Shölkopf in [49] is the first who
extended SVM principle to one-class SVM (OC-SVM). The
main idea of OC-SVM is to consider only positive examples
of the considered class to model the decision boundary. The
principle lies on projecting the data onto an hyper-plane (in a
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higher dimension) whose distance to the origin is maximal.
The result is a binary function that returns +1 if data fall
into the region containing positive data (capturing also the
training data) and −1 elsewhere. This function is controlled
by the parameter ν ∈ ]0; 1] that represents an upper bound on
the fraction of data that may be outliers. To find the hyper-
plane w that separates positive data xi (i = 0, 1, 2, . . . , n)

from the originwith a thresholdρ and nonzero slack variables
εi ≥ 0,∀i ∈ [1..n], the system must solve the following
quadratic optimization problem:

minρ,w,εi

1

2
||w||2 + 1

ν.n

n∑

i=1

εi − ρ (1)

subject to:

(w.�(xi )) ≥ ρ − εi (2)

The decision function has the following form:

f (x) = sgn((w,�(xi )) − ρ) (3)

Extension to incremental learning The basic dynamic learn-
ing principle that we used to adapt OC-SVM classifiers to
incoming data (the stream) has been inspired from Syed’s
proposition dedicated to incremental binary SVM [43]. For
each class, we learn a OC-SVM that incrementally evolves
using the classical SVM learning procedure with both old
support vectors and new incoming data having the expected
label (corresponding to the class the SVM is modeling). By
this way, the concept drift is managed directly by the SVM
learning procedure. In addition, to limit the drawbacks of
one-class system, we also include the use of negative data
(when available) but only during the parameter selection pro-
cess of the system, which is performed at each learning step.
Using negative data for parameter selection impacts posi-
tively the balanced accuracy estimated on the recognition of
new incoming data, while preserving themodeling properties
of OC-SVM.

The other kinds of concept evolution (addition/removal of
classes, splitting or merging) are handled as follows: when
a data with an unknown label is appearing,3 we simply have
to create a new SVM to learn this concept, without any
impact on other SVM models. When the user is deciding
to merge two concepts, the two OC-SVMs are replaced by a
single OC-SVM trained with support vectors from both old
SVM models (representing the two concepts to be merged)
and the new positive data (corresponding to the merging).
If a split is required, then two OC-SVMs are built, each
one using the support vectors from the old OC-SVM that

3 Please remind that we are dealing with supervised learning.

is split, and new data corresponding to each of the two new
classes.
Overall algorithm Let T1, T2, . . . , Ti be the sequence of data
coming at time t1, t2, . . . , ti .Csystem = {C1,C2, . . . ,C j} is
the list of classes that have already been modeled by the sys-
tem at ti . This list is increasing over the time when data with
previously unknown labels are appearing (i.e., new classes
that do not belong to Csystem). We also consider SVsystem
= {SVC1

system, SV
C2
system, . . . , SVC j

system} the list of sets of

support vectors (SVs) for each class in Csystem. SV
C j
system

is the set of all SVs used to model the class C j . DCj
i and

DC̄ j
i are, respectively, the data from Ti with class j (positive

examples) and data from other classes (negative examples),

at time ti . We call GridSearch(DCj
i , DC̄ j

i ), the function that
selects the best parameters γ, ν during the training at time ti
for class C j . The parameter ν approximates the fraction of
errors accepted over SVs.γ is the parameter forGaussian ker-
nel we are using here. These parameters can be re-estimated
at each learning step ti .4 In the case of online mode, we mod-
ify the GridSearch function to adapt the situation of missing

negative data DC̄ j
i by only using the positive data DCj

i to
find the best parameter. In the previous version [46] with the
batch mode, this GridSearch function was not available and
the system had to use both positive and negative data. Finally,
we define the function OneClassSVM((γ C j , νC j ), DCj

i ) as
the learning function for class C j . The algorithm is given in
Algorithm 1.

The principle of the algorithm is illustrated in Fig. 1 with
four successive learning steps. The stream contains data that
initially belong to two classes (“blue” and “red” concepts).
Each step is associated with a labeled dataset. In this exam-
ple, we have 4 sets: Lot 1, Lot 2, Lot 3 and Lot 4 arriving
successively (timeline t). Each set contains examples belong-
ing to different classes. In the first step, the system divides
the data according to the class they belong to. A OC-SVM is
learned on each subset of data to produce a model for each
represented class. Each one contains corresponding support
vectors. The multi-class system resulting from this learning
step can then be used to process new incoming data from
the stream for their classification, until next training set is
available. At this second step, for each class, the system uses
all support vectors from previous model with new data of the
same class: SVs 1 in orange box corresponding to red class
are used with red data from Lot 2. The new learnt models
replace the previous ones. The mechanism is then going on
according to the same principle. At time T3, when some data
are tagged with an unknown label (“violet”), they are used

4 The system could handle the adaptation of the parameters on each
learning step to assure the best integration of concept changing. The sys-
tem could also use the predefined parameters to economize the learning
cost.
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Fig. 1 Graphical illustration of mOC-iSVM algorithm with a stream divided into 4 learning steps and containing 3 classes: “red,” “blue” and
“violet”

to learn a new OC-SVM dedicated to this new class which
is integrated into the system and then handled in the same
way as the others. To adapt the basic algorithm in [46] to
new complex scenarii (concepts splitting, merging or delet-
ing) with user interaction, an interactive module is added to
the system; see Fig. 1. This module, besides allowing the
correction of the classification results provided by the cur-
rent mOC-iSVM, has two main tasks: firstly, transform the
class model by transferring the old models into the new cre-
ated ones (two or more old models into one new model or
inversely, one old model into two or more new models) and
secondly, activate or deactivate the remaining class models.
In case of concepts splitting or merging, old models must
be deactivated and in case of class suppression, this solution
simply deactivates the deletedmodel. The user can even reac-
tivate or reuse these old deactivated models if necessary. At
time T4, the user decides to create a class merging (between
“blue” and “violet”) via this interactive module.

4 Theoretical validation of mOC-iSVM on batch
and online learning.

In this part, we evaluate the ability of the system to achieve
good accuracy while doing successive batch learning steps
and online learning, whereas the number of concepts is
increasing. The evaluation is done on a classical benchmark,
not related to end-user experiments described in Sect. 5, to
allow the comparison with other state-of-the-art algorithms.
The dataset used is the Optical Handwritten Digits DataSet
(UCI Machine Learning Repository). The choice for this
dataset is linked to existing state of art results with other
incremental algorithms. This dataset is composed of ten dif-
ferent classes (digits) represented by 5,620 examples (3823
for training and 1797 for testing) and 64 attributes. It has
been created by Kaynak in 1995 [50].
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Algorithm 1 mOC-iSVM algorithm
1: INIT STEP:
2: for each C j in Csystem do
3: DCj

i = ∅
4: end for
5: STEP 1: ADD NEW CLASS IF EXISTS
6: for each data in Ti do
7: //if the class label of data is not in Csystem then name it C j + 1
8: if label(data) /∈ Csystem then
9: //increase the number of classes
10: j = j + 1;
11: //add new class to list of class
12: C j ← label(data)
13: Csystem = Csystem ∪ C j

14: DCj
i = {∅}

15: //create new list of SVs for the new class C j
16: SVC j

system = {∅}
17: SVsystem = SVsystem ∪ SVC j

system
18: end if
19: end for
20: STEP 2: CREATE LEARNING SETS FROM Ti
21: ∀k ≤ j , DCk

i = {data ∈ Ti/label(data) = Ck}
22: ∀k ≤ j , DC̄k

i = {Ti − DCk
i }

23: STEP 3: UPDATE MODELS
24: for each C j in Csystem / DCk

i 	= ∅ do
25: //add SVs of class C j in training data of class C j
26: DCj

train = SVC j
system ∪ DCj

i ;
27: //select the best parameters γ and ν

28: (γ C j , νC j ) = GridSearch(DCj
train, D

C̄ j
i );

29: //run the classic One-Class SVM to find new SVs of class C j
30: SVC j

system = OneClassSVM((γ C j , νC j ), DCj
train);

31: end for

4.1 Experiments with batch learning

We are first evaluating the performances of our method in
its ability to add new classes of digits along with the sets
of incoming data. In [46], we have already shown the very
good results of our approach compared to classical non-
incremental one-class SVM(OC-SVM) algorithms and other
incremental approaches like Learn++.SVM (Learn++ with
SVM) [24], Learn++.NC (Learn++ with New Class) [23],
Bagging, ARC (ARCing), and DWM (Dynamic Weighted
Majority) [35] approaches. We remind here these results,
based on the same experimental protocols that the ones pro-
posed by Muhlbaier in [23] for Learn++.NC and the one of
Erdem [24] for Learn++. SVM.

Erdem, in [24], divided the training dataset into three dif-
ferent parts corresponding to three successive incremental
training steps (Ti ). Each part is mutually exclusive and con-
tains, respectively, 30, 35 and 35%of the training data, drawn
randomly. The data subsets from [24] are not available, so,
in our experiment, classes are appearing in a different order,
with similar proportion of data at each step. Since our system
is based on independents OC-SVM, this way of preparing
data might not have impact on results.

Fig. 2 Accuracy of mOC-iSVM and Learn++.SVM based on Erdem
et al’s [24] protocol

Fig. 3 Accuracy ofmOC-iSVM, Learn++.NC, Bagging, ARC,DWM,
Learn++ based on Muhlbaier et alś [23] protocol

The experiments detailed in [23] were using 90% of full
dataset as training set. Authors divided these training data
into 4 different parts corresponding to 4 successive incre-
mental training steps (22.5% each one), drawn randomly.
This second experiment aims at comparing the accuracy of
themOC-iSVMwith Learn++, Learn++.NC,Bagging,ARC,
DWM.

For both cases, the test set used at each step is fixed
(original test set in [24]; 10% of full dataset in [23]). The
accuracy for each class, defined as the proportion of true
results (both true positives and true negatives) relatively to
the total number of examples, is the performancemetric used.
For alternative approaches, we report the results with same
metric, mentioned in the above papers. Please notice that for
mOC-iSVM, we used the grid search at each step for the
parametrization of the one-class SVM.

Through the results depicted in Figs. 2 and 3, we
can observe that the mOC-iSVM classifier is able to add
new classes during the training and has the ability to
improve its performances step by step. In comparison with
Learn++.SVM(Fig. 2), the accuracy ofmOC-iSVM is higher
on most classes whenever they are appearing (see step 2,
classes 3 and 8 for Learn++.SVM compared to classes 3 and
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6 for mOC-iSVM; and at step 3 the new classes 4 and 9 for
Learn++.SVM compared to classes 7 and 9 for mOC-iSVM;
the class 3, introduced at same time step corroborate this
analysis). Moreover, these good results remain throughout
the different steps while for Learn++.SVM, because of inter-
dependencies of binary SVMs, the addition of new classes
has some impact in the accuracy: It is decreasing for the
class 1 and 6 at step 2. Also, at the end, while all learning
data have been processed, the overall accuracy is far better
for mOC-iSVM than others methods (10% better).

In the case of Mulhbaier’s protocol in [23] (Fig. 3), when
new classes are appearing (class 4 and 5 in step 2; class 6 and
7 in step 3; class 8 and 9 in step 4), mOC-iSVM classifier
can again learn very efficiently and quickly the new classes. It
leads to an accuracy better than all other approaches. Particu-
larly, Bagging, ARC, and Learn++ have lower performances
with the introduction of new classes (see step 4 with the new
classes 8 and 9). In the final step (see step 4), when all data
have been processed and all classes have been learned, mOC-
iSVM classifier has the same accuracy than Learn++.NC.
Both are much more efficient than Bagging, ARC, DWM
and Learn ++ that give recognition rates only between 75
and 82%.

4.2 Experiments with online learning

In this section, we illustrate the performances of the mOC-
iSVM classifier with online learning: each time a new
example is available, a new training is performed. We are
still using the same dataset as previously with original test set
(1797 examples). A part of the learning set (3000 examples
randomly chosen among the 3832) is used for online learn-
ing. The full experiment is repeated five times with different
learning datasets (different examples and different order of
presentation in the stream). In this online mode, new classes
can appear at anytime during the process. Moreover, at each
step, we compare the online learning with a batch learning
realized every 50 and 100 data. The parameters of the mOC-
iSVM are determined as previously (with a grid search at
every learning step) for the batch learning procedure. But for
online learning mode, we are using fixed parameters for OC-
SVMs in such way: The first 50 data are processed in batch
mode (with grid search), and then, these parameters are kept
fixed during online learning on remaining data.5

The performance measure used on this experiment (and
next ones) is the Balanced Accuracy (BA [57] where TP is

5 We could have done some grid search optimization at different times,
as in batch mode, by keeping some training examples, for example,
each of the 50 data. A windowing technique could have also been used.
Consequently, the results obtained can be easily improved.

Fig. 4 Result of mOC-iSVM classifier in online mode compared to
batch modes with varying training set sizes (50 and 100 observations
per batch)

true positives, FN false negatives, TN true negatives and FP
false positives) for each class:

BA = sensitivity + specificity

2

= 0.5 × TP

TP + FN
+ 0.5 × TN

TN + FP
(4)

The Global Balanced Accuracy (GBA) is also used as a per-
formance indicator for all one-class classifiers taken together.
This way of evaluating the classifier accuracy takes into
account imbalanced data in the test set and consequently
allows to evaluate with a higher precision the compromise
between detection of true positives (sensibility) and rejec-
tion of true negatives (specificity).

Figure 4 presents the results, averaged over the five tests
carried out. We can observe that the mOC-iSVM is sensi-
tive to the amount of training data. This phenomenon has
been detailed and explained by Sato in [45]. In the early
steps, the accuracy is generally lower than the one observed
with the batch mode and the results are less stable. This phe-
nomenon is then smoothed up to 300 observations. Beyond
this threshold, the stability is maintained and the accuracy
becomes similar for all approaches from the 800th exam-
ple. This figure clearly illustrates the incremental learning
capacity of mOC-iSVM: Thanks to its efficient selection of
support vectors, we can see that the performances are always
increasing (except some minor local variations). We can also
notice that on such data, the parameters of OC-SVM fixed
after only 50 data are not criminal since online method is
in any case converging toward batch methods with regular
re-estimation of parameters. Finally, we can also see that the
performance of the mOC-iSVM is not much dependent on
the choice of the data batch size.
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5 Application on document stream classification:
scenarii for a smart digitization process

5.1 Embedding mOC-iSVM inside a smart scanner

The goal of these new series of experiments is to evaluate the
capacities of our dynamic system to perform two identifica-
tion tasks: first to identify the quality of a digitized document;
second to categorize a document based on its content and user
needs, taking into account possible evolution of document
categories (apparition of new classes, merging, splitting, and
drifting). A specific digitization protocol (scan parameters) is
associated with these categories. It aims at providing a bet-
ter or complementary digitization of documents according
to their content/quality and to the user needs. The classifica-
tion is performed on a data stream composed of document
images continuously produced by a scanner. Our objective is
to illustrate the ability of the mOC-iSVM approach to clas-
sify the incoming data in situations where the learning steps
are very frequent and realized on small data quantities, and
where the user plays an important role to guide and to control
(accept/modify) the system decisions (i.e., results of classi-
fication). The user has also to determine the frequency of
learning steps on valid data. Each time a document is pro-
cessed by the scanner, a default scanning protocol is used to
scan the image and to provide a “normalized” description on
which classification tasks are performed.

At the beginning of the process of images digitization, the
scanner is working in a fully supervised mode. This means
that the classifier provides recognition scores for all classes
that already exist in the scanner and the consequent role of

the user is to validate the correct class assignments and the
digitization protocol associated with them (the protocol and
parametrization of the scanner will not be detailed in this
paper).

During the digitization process, the user will have the
possibility to interact in different ways with the system
depending on the targeted application (content recognition
or quality recognition). Each interaction will have feedback
with the learning process, either in specifying defined actions
(of adding, subtracting, splitting or merging classes), or in
“just” validating the recognized image.

More precisely, the user has the possibility to order four
different actions: He can create new classes (+) or suppress
(-) one existing class if it is no more useful. He can also order
to split (when an existing class has to be divided into two or
more different classes) or merge classes (when a class has
to extend its frontiers by merging with other existing class
models). This last situation can be encountered in the only
case of content recognition (see Fig. 5).

In a digitization scenario, the frequency of learning is flex-
ible: The system can either wait a for a given number of
digitized images (called batch mode in Fig. 5), or it can give
rise to learning after each validated scan (called online mode
in Fig. 5). After the first learning steps, the classier improves
its accuracy and is able to decide autonomously the current
document category (or the image quality if the classifier is
dedicated to image quality identification). Each time, if the
system returns an incorrect suggestion, the user can interact
with it by correcting the category assignment or by creating
a new one associated with the new digitized image. Particu-
larly, for the content recognition, he can also split or merge

Fig. 5 Overall flowchart of the system for digitization of document quality and content
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some existing categories before performing class assignment
to adapt the system into his goals of processing.

5.2 Identifying document quality from a stream

5.2.1 Dataset and feature description

The database used for these experiments contains three
classes of document images based on three different lev-
els of quality depending on level of blur: distinct, blurred,
and very blurred (see Fig. 6). This categorization in three
levels of quality is studied in [51] who detailed the rela-
tion existing between the different qualities of a document
image and the expert definition of the quality for different
purposes: archiving, storing, visualizing and analyzing. The
first level “distinct” means that the quality of a document
image is satisfying for an industrial task (content recogni-
tion by OCR, content segmentation, etc.). The second level
“blurred” means that the quality of a document image can be
satisfying for human reading but not for automatic process-
ing such as OCR. The last level “very blurred”means that the
human eyes can identify that the document image is blurred.
With the initial document image considered to be “distinct”
(best quality), we can get the second and the third level by
applying a simple Gaussian filter with σ = 0.8 and σ = 1.2,
respectively [51]. We applied this principle on images with
different contents (printing, handwriting, graphic) each one
existing at the three levels of quality.

The classification of image quality relies on simple gradi-
entmeasures. Vinsonneau, in [51], has shown that this simple
method can provide very good performances compared to
many others complex methods like Haar method [52], Defo-
cus Blur Estimation [53], Binarization of Fourrier [54].

Fig. 6 Three levels of quality (from top to bottom: distinct, blurred,
and very blurred)

Fig. 7 Comparison between Global Balanced Accuracy (GBA)
obtained from different sizes of learning sets and with online learning
on document quality dataset

5.2.2 Experiments with online and batch processing of a
data stream

In this scenario, we illustrate the capacity of the mOC-iSVM
classifier to determine the right document quality accord-
ing to the gradient features. In those experiments, we used a
series of 140 images for learning and observe the classifica-
tion results on a test set of 450 images at each learning step.
The images from learning set are processed as a stream, simu-
lating a situation of real acquisition creating vibrations in the
arrival of the image to be scanned in a predefined frequency.
The incremental classification scenario is performed in batch
mode as well as in online mode (at each time step an image
is captured with a fixed digitization protocol and its gradient
features vector is extracted for classification and learning).
The system starts with a short series of images whose clas-
sification (quality level) is validated by an operator. After
this initializing period, the training procedure starts to run
and updates the models corresponding to the first classes of
quality. After a while, the training procedure automatically
continues to retrain old models with new incoming images
that are validated. This can be done in both online or batch
modes.

Figure 7 shows the performances with 3 different sizes of
training sets (batch) applied on the stream: with 2 images,
5 images and 10 images per set.6 We can observe that the
Global Balanced Accuracy (GBA) is almost independent to
the size of the learning sets. There are someminor differences
on the evolution of accuracy: online mode seems more effi-
cient than others in absolute values, but from the evolution
point of view, they are the same. Between the 50th and the
60th steps, all curves go down probably because of a tempo-
rary change in apparent probability distribution function of
classes (examples might be concentrated on a part of proba-
bility distribution function of the classes). Consequently, the
system fails to recognize correctly the classes. But thanks to
the selection of best performing SVs, the system is rapidly
improving its accuracy and is going on in such way. In the

6 Online results are also presented.
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Fig. 8 Result of the mOC-iSVM classifier according to global preci-
sion, global sensitivity (or global recall), and global specificity with
online learning on document quality dataset

Fig. 9 Evolution of the quantity of SVs with online learning on docu-
ment quality dataset

last step, the difference between all curves does not exceed
5%.

Figure 8 is giving global precision, sensitivity, and speci-
ficity for the same experiment (averaged over the 3 classes).
Overall, the system is achieving a high specificity (i.e., high
rejection rate of true negatives). The sensitivity (i.e., true pos-
itive detection or recall) and precision are starting with quite
low values but are increasing more and quickly (the sensitiv-
ity is nearly double after 25 iterations). We can see also that
in the 60 first steps, the results are quite unstable (the curves
go up and down suddenly) but after a while, results become
stable with higher performances.

Considering the quantity of support vectors (SVs) that are
used in the SVM models (see Fig. 9), we can notice that it
increases from 0 to around 20 to achieve around 85% ofGBA
(Global Balanced Accuracy). This means that only 20 SVs
are needed to describe the overall 140 learning observations.
If more SVs are added (after 100th step), the GBA is nomore
increasing. We can also observe that the quantity of selected
SVs can decrease when new incoming examples can replace
more than2otherSVs (while preserving ahighperformance).
Indeed, around the 126th step, the curve seems to lie down
when the system is using more than 20 SVs (Fig. 9). Finally,
we canmention that, in the 45th step (a stepwhere the average
performances are decreasing in Figs. 7 and 8): the best fitted
SVs might be replaced by less efficient ones. Then, until the
system can find out other good SVs in the 60th step, the
accuracy is no more increasing.

These observations tend to put focus on one weakness of
mOC-iSVMclassifier: once goodSVs are replaced by others,
they cannot be reuse later again if needed. What is an advan-

tage for flexibility could become a drawback for stability.
Nevertheless, if other good representatives are encountered
again, the system can quickly and efficiently select them to
improve the performances. Let’s notice that based on such
observations, some mOC-iSVM variants have been studied
to achieve a better trade-off between stability and plasticity,
especially in non-stationary environment [47,48].

5.3 Categorization of a stream of document images
based on their content

5.3.1 Dataset and feature description

The database used for these experiments contains six classes
of documents, each one with a different content (see Fig. 10):
Handwritten musical scores (490 instances; class C1), Print-
ing I (230 instances; class C2), Printing II (99 instances;
class C3), Handwriting I (379 instances; class C4), Hand-
writing II (103 instances; class C5), Maps (279 instances;
class C6). The classes Printing I and Printing II are com-
posed of documents whose origin is different (historical
and recent documents) making images different considering
background, noise and defects, fonts, etc. This distinction
was made to produce 2 subclasses for Printing. This is also
true for Handwriting. For all of the 6 classes, the content is
relatively homogeneous. Particularly, printed and handwrit-
ten images with graphical elements have been removed to
allow a better homogeneity.

The document images are described by a set of 41
features that have been selected for their ability to charac-
terize the large variety of contents, and to ensure satisfying
intra-class consistency. Considering that the documents are
mainly composed by contrasted strokes and “binary” content
(objects/foreground over background), most of descriptors
are scalar values that express the distribution of objects
pixels, their entropy, density, compactness. The analyzed
documents contain evident differences in the amount of
elements corresponding to their content (printed or hand-
written text, line strokes, drawings, etc.). Those singularities
are estimated by different features. So as to work with the
best adapted features among the 41, we used the SVM-RFE
method presented in [55] to select the most efficient ones.

Fig. 10 Dataset of document images with 6 classes of content

123



148 A. K. N. Ho et al.

We finally kept 26 features among the 41: 6 geometrical
blob features; 10 features based on the variation of lumi-
nance; 1 feature measuring the density of information; 1
feature representative to the complexity; 1 texture feature; 5
direction-based features; andfinally 2 color features.Because
the selected images of our dataset mainly contain gray-level
images, the color features are used as complementary lumi-
nance features.

5.3.2 Experiments with online and batch processing of a
data stream

In this scenario, we illustrate the capacity of mOC-iSVM to
classify each image depending on its content, with the online
and batch mode. A similar protocol as before is used here.
We are using a stream of 130 images as learning dataset that
are considered one by one or in batch mode (2 instances, 5
instances, 10 instances at each learning step). Each image
belongs to one of the six classes of content, and they are
introduced successively in the following order: C1; next C2;
next C3; next C4; next, images from C1 to C4; next C5 and
C6; and finally images from C1 to C6. A test set with 1450
images is used for observing the evolution of accuracy for
each classifier corresponding to each of the 6 classes.

Figure 11 gives the global precision, global sensitivity/re-
call and global specificity in case of online learning while
introducing the different classes. We can see several phe-
nomena. First, the average specificity remains stable while
introducing new class models which means that the models
are not affected by appearance of new classes. Moreover,
each time a new class is encountered and the next learning
step leads directly to a significant increase in recognition
on tested data for that new considered class (see precision
and sensitivity while learning C2, C3…). Furthermore, each
classifier performance is also improved at each new learn-
ing step even if the new tested data do not belong to its own
class. Indeed, a data can be wrongly accepted as C1 by the
C1 one-class SVM until the creation of the C2 classifier that
will prevent ambiguities.When all models are known (at step
70th), we observe that the average precision, sensitivity, and
specificity rates are increasing very slowly over the timewith
small oscillations until stabilization.

Figure 12 illustrates the comparative performance of
mOC-iSVMwith different sizes of learning sets (17, 2, 5 and
10 documents by set). The performance is measured using
Global Balanced Accuracy (GBA). As previously, we can
see that the variations of GBA do not exceed 5% while using
different sizes of training sets. Consequently, the influence
of this parameter is minor. This proves that the combination
between new incoming data (even in much reduced quantity)
and ancient SVs used all together for the training phases is

7 Or online learning.

Fig. 11 Performances of the mOC-iSVM classifier based on global
precision, global sensitivity (or global recall) and global specificity
while doing online learning on document content dataset

Fig. 12 Comparison between accuracies (Balanced Accuracy)
obtained with different sizes of learning sets on document content
dataset

Fig. 13 Evolution of the number of SVs with online learning on doc-
ument content dataset

a very efficient solution guaranteeing both older knowledge
preservation and adaptation to new incoming data.

As observed in Fig. 9 for quality categorization, we can
notice in Fig. 13 that after a given amount of SVs (around
30), their increase is not necessary followed by an increase in
accuracy: GBA remains nearly constant after the 70th time
step (less than 1% of difference). Theoretically, it could be
interesting and useful to be able to determine such threshold
to limit number of SVs used and so to limit the complexity
of the system and maintain its speed. Consequently, it might
be possible to reduce the frequency of training steps.
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5.4 Experiments considering different kind of concept
evolution

All results following are obtained using the previous docu-
ment content dataset with a 5-fold stratified cross-validation.
To simulate the data stream, the full learning set for each
cross-validation is split into 12 subsets that are corresponding
to 12 successive learning steps. Each set is mutually exclu-
sive and contains, respectively, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 20,
and 20% of the training set, drawn randomly. Consequently,
small number of data per class are coming first to evaluate the
ability of the learning procedure to work with few examples
(from 2 to 8 data). The test set used at each step is constant
(remaining part of dataset left apart by cross-validation). The
different scenarii proposed in the next sections simulate a data
stream in which different situations of evolution of classes
are encountered. Of course, depending on the scenario used,
the labels for each document image are adapted to meet the
requirements of the experiments (see below).

5.4.1 Standard incremental learning scenario (fixed
number of concepts)

The aim of this first scenario is to evaluate the incremental
ability of the system to learn over the time, with a fixed num-
ber of classes. At the end of the last step, the performances
are compared to the one of the static systems, learnt using
full training set. This static approach is a classical multi-
class SVM composed with a set of one-class SVM and using
the max rule for class assignment. The mOC-iSVM is learnt
using a grid search at each learning step, with negative data,
in order to improve their discriminative accuracy. The sys-
tem will handle the adaptation of all parameters of system
given by the grid search function when a concept is chang-
ing during time. As mentioned before, this does not impact
properties of one-class SVM. We are doing the same with
the static system.8

The results presented inTable 1 show the accuracy (Global
Balanced Accuracy—GBA) of mOC-iSVM achieved after
the final learning step, compared with the one of the static
one-class SVM. We can observe that GBA values are sim-
ilar demonstrating that the dynamic learning process is not
degrading the accuracy. This was already observed in [46]
on digits benchmark.

Figure 14 shows the temporal evolution ofBalancedAccu-
racy (BA) for each class, as well as GBA. This last one is
globally increasing, even if for some classes, and at given
steps, we can observe a decrease in BA. This phenomenon
can be explained by the progressive introduction, at each step,

8 Experiments we have performed have shown that using the negative
information available for parameter selection, in case of one-class SVM
can improve their performances of at least 10%.

Table 1 Performance comparison between mOC-iSVM after all train-
ing steps and static multi-one-class SVM (learnt in one step with all
data)

Approaches Static One-Class SVM (%) mOC-iSVM (%)

Musical scores 97.94 98.33

Printing I 72.90 72.31

Printing II 73.78 73.78

Handwriting I 88.78 88.51

Handwriting II 99.42 99.46

Map I 82.70 83.00

GBA 89.25 89.23

Fig. 14 Accuracy (BA and GBA) of mOC-iSVM over the learning
steps considering fixed number of concepts

of examples that are making the classes more difficult to dis-
tinguish. Then only more representative examples, coming
later, can help to remove ambiguities.

5.4.2 Incremental scenario with addition of concepts

This second scenario is used to evaluate the ability of the
system to model new incoming classes, and its impact on
existing classes. Here we consider that the introduction of a
new concept is provided by the user giving some examples
with the new label.

The document stream is composed as follows. Musical
scores class is coming since 1st step. Handwriting I is coming
only from 2nd step. Then Handwriting II is appearing from
3rd step, Printing I from 4th step, Printing II from 5th step
and, finally, Maps from 6th step. The next steps (from 6th to
12th) are the same as in the 1st scenario (Sect. 5.4.1). So as to
compare results with this first scenario, we have to consider
that less training examples are used for some classes. Indeed,
examples in learning sets that belong to classes that have not
yet been encountered are completely removed from learning
procedure (for example, the Maps examples belonging to
steps 1–5 in first scenario are not used for training in this
scenario).

The results are depicted in Fig. 15. We can observe that
the first classes to be learnt do not suffer at all from confu-
sions with other classes. Thus their accuracy is very high. Of
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Fig. 15 Accuracy (BA and GBA) of mOC-iSVM over the learning
steps considering an increasing number of concepts

course, when new classes are added, the accuracy decreases
but without being much less than in classical scenario. For
example, in 2nd step, the BA of Musical Scores is only
3% less than in previous scenario and increases just after.
Similarly, Printing I is starting with a higher accuracy that
decreases next up to 6th step where all classes have been
added. All other classes are associated with a regular increas-
ing in BA, and in 12th step, we obtain the same GBA than
previously, even if less data have been used for learning.

To conclude this part, we can propose alternatively to use
an automatic detection of new concepts thanks to the intro-
duction of a rejection rule, which might be easier thanks to
the use of one-class classifiers (a big advantage over discrim-
inative approaches): if a sample is considered to belong to
none of the existing classes, thenwe can assign it a new label.
This possibility is not studied here.

5.4.3 Incremental scenario with extension of concepts

The 3rd and 4th scenarii are designed to simulate concept
extensions. For instance, in our classification problem, we
have two kinds of handwritten documents and two kinds of
printed documents. Each one could be considered to belong
to the same kind of documents, i.e., to the same super-class
Handwriting (and Printing, respectively). To simulate this
evolution in 3rd scenario, the system is first trained (steps 1-
5) on the first subclasses (Handwriting I and Printing I) with
a generalized label (Handwriting and Printing), both of them
with other document classes, as in first scenario. From 6th
step, examples from the two other subclasses (Handwriting
II and Printing II) are also comingwith the same label (Hand-
writing and Printing). Doing so, the concept of Handwriting
(resp. Printing) is extended from Handwriting I (resp. Print-
ing I) to Handwriting II (resp. Printing II). Of course, the test
set used here is adapted to reflect these modifications (exam-
ples of Handwriting II and Printing II are not considered in
steps 1-5 and are considered to belong to the same class as
Handwriting I and Printing I after 6th step). The 4th scenario
is the same, but considering firstly the examples belonging
to Handwriting II and Printing II instead of Printing I and
Handwriting I.

Fig. 16 Accuracy (BA and GBA) of mOC-iSVM over the learning
steps considering concept extension fromHandwriting II (resp. Printing
II) to Handwriting (resp. Printing)

Only results on the 4th scenario are presented here (the
3rd one is presenting a more regular increase in accuracy
and thus is less interesting in terms of classifier behavior).
Since subclasses Handwriting II and Printing II are quite
easy to model (different from other classes), the BA is quite
high before the extension (see the curves of Handwriting and
Printing in Fig. 16). But at the 6th step, when new subclasses
(Handwriting I and Printing I) are coming, the loss in BA is
significant, even for the Map class which is impacted by this
extension (notice that it is not the case for musical scores).
Next, the increase in BA during the following steps (6th to
12th) is regular and at 12th step, the final BA of Handwriting
(resp. Printing) is close to the average BA of its subclasses,
showing that the loss of accuracy has been nearly caught up,
even if less data have been used (for subclasses coming at
6th step, i.e., Handwriting I and Printing I).

5.4.4 Incremental scenario with concept drift

Concept drift is a very typical case when considering pro-
cessing of data stream. This phenomenon occurs when the
probability density function of a class is changing over the
time. The previous scenario (concept extension) could be
considered as being a specific case of concept drift. Never-
theless, concept drift often implies that the initial probability
density function is forgotten and replaced by a new one,
which is not true with concept extension. To simulate clas-
sical concept drift, we are using again the two Handwriting
and Printing subclasses. As previously, we have two sce-
narii. The first one considers the drift from Handwriting I
(resp. Printing I) to Handwriting II (resp. Printing II). The
second one is based on the reverse drift. In both cases, the
drift that occurs at step 6 is abrupt since it corresponds to a
shift from one distribution to another. Figure 17 only gives
results corresponding to the first case.

In comparison with other approaches dedicated to such
cases, our approach does not detect explicitly the drift but the
one-class models are automatically adapted to the changes
observed with a high plasticity. Indeed, between the 6th and
the 7th steps, the maximum BA achievable on target classes
is already nearly obtained. We can also notice again that
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Fig. 17 Accuracy (BA and GBA) of mOC-iSVM over the learning
steps considering concept drift from Handwriting I (resp. Printing I) to
Handwriting II (resp. Printing II)

Musical Scores class is not impacted by the drift. The novelty
here comes from the increase in accuracy for the Map class
which was not true before. One explanation could be that the
concept drift eliminates some confusions between Map and
Handwriting I/Printing I.

5.4.5 Incremental scenario with split and merge

As far as authors know, splitting and merging concepts are
specific scenarii of concept evolution that have not been
studied so far with dynamic supervised learning. Here, we
consider first the merging of Handwriting I (resp. Printing I)
with Handwriting II (resp. Printing II) at learning step 6 (see
Fig. 18). Next, we consider the splitting of a Handwriting
super-class (resp. Printing super-class) into two subclasses
corresponding to Handwriting I and II (resp. Printing I and
II). This is also performed during the 6th step.

In Figs. 18 and 19, we can observe that the accuracy is
decreasing when the splitting or merging is done which is
quite evident.9 But just after, it is starting to increase again
quickly, step by step, showing that models can be adapted
to the new structure of concepts. Here again, we can notice
that the final BA of the classes becomes nearly the same as
the one that could be expected regarding previous scenarii.
We can also notice that the effect on subclasses is not always
the same. For example, in case of splitting, both subclasses
of Printing are suffering from the changes, whereas in case
of Handwriting, Handwriting II keeps same accuracy than
its super-class and only Handwriting I is decreasing in accu-
racy. In case of Handwriting merging, the accuracy is nearly
averaged over the two subclasses, whereas for Printing, the
accuracy remains similar to the one of the less accurate sub-
class (Printing I). Of course, this could be explained by the

9 Please notice that in this figure, as well as others, interpolated curves
are shown to provide a better rendering of a stream simulation (consid-
ering our protocol a more exact representation would have been dot or
step plots). Consequently, there is apparent loss of accuracy between
steps (between steps 5 and 6 here, for example). In fact, in our scenarii
such loss only occurs at the new step (step 6 here) and not before.

Fig. 18 Accuracy (BA and GBA) of mOC-iSVM over the learning
steps considering merging of Printing I (resp. Handwriting I) with
Printing II (resp. Handwriting II). Printing and Handwriting are cor-
responding super-classes

Fig. 19 Accuracy (BA and GBA) of mOC-iSVM over the learning
steps considering splitting from Printing (resp. Handwriting) into Print-
ing I and II (resp. Handwriting I and II)

intrinsic ambiguities between subclasses, which gives some
ideas on how automatic detection of splitting/merging could
be proposed to the user, according to feature space, instead
of considering semantic point of view. Alternatively, this
could help to find better feature sub-space adapted to a better
discrimination (or less ambiguities) between one-class mod-
els.

6 Discussion on runtimes of learning

For the implementation, we used LibSVM [58] in MATLAB
to implement our proposition on a PC with a Intel core i7
2.40GHz CPU and 8GB of RAM. For the kernel function,
we used RBF (Radial Basis Function). Firstly, let talk about
the quality of the models. Figures 20 and 21 present the evo-
lution of the quantity of SVs in the models of the system. It
shows that the final models have almost the same quantity
of SVs whether they were trained in online or batch mode.

Fig. 20 Evolution of quantity of SVs on document quality dataset
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Fig. 21 Evolution of quantity of SVs on document content dataset

Fig. 22 Runtime of each learning step on document quality dataset

Fig. 23 Runtime of each learning step on document content dataset.

In addition to the conclusions of the previous experiment
(Sects. 5.2, 5.3), in which the performance of learning is
independent of the choice between online and batch mode,
we can conclude that the quality of models is almost identi-
cal and independent to the learning configuration. The main
difference comes only from the runtime.

Theoretically, the runtime ofmOC-iSVM is highly depen-
dent on the number of data in the training set and on their
parameters. In our incremental process, at each learning
step, the system identifies automatically the best parameters
through the GridSearch function. Consequently, the runtime
of each learning step could vary. In this , we show the run-
time achieved by our system configured to settings used in
previous experiments. When using fixed parameters (as the
experiments with online learning in Sects. 5.2, 5.3), these
runtimes do not include the time for searching the best param-
eters. On the contrary, when the system optimizes its own
parameters via the grid search (as experiments in Sect. 5.4),
the runtime depends on the search space of parameters given
to GridSearch function (it could increase highly for a wide
range of value).

Fig. 24 Average runtime of a learning step: comparison between
online and batch learning

The evolutions of runtime for each learning step for both
online and batch learning on the quality and content dataset
(Figs. 22, 23) show that the runtime is almost stable through
time with a very small increase caused by the evolution of
the models and their SVs (the difference between the 50
first steps and the 50 last steps is smaller than 0.0030s). The
high runtimes in the first steps are influenced by the creation
of models. In our experiments, the average runtime of each
learning step is around 0.025s for quality dataset and 0.035s
for content dataset.10 The runtime of each learning step in
online learning is similar to the batch mode with sets of 2, 5,
and 10 observations (difference lower than 0.001s), Fig. 24.
From the very large sets with 20 observations, the difference
becomes more important (higher than 0.01s). The total run-
time for a stream processing depends also on the quantity of
performed learning steps, and the consequence is that even
if the learning time of the online mode is less than the batch
one, the total runtime in the online mode could be still much
higher than batch ones.11

7 Conclusion

In this paper, we have proposed a new dynamic classifica-
tion scheme based on a set of independent one-class SVMs
(mOC-iSVM). This new proposition has been validated on
very popular benchmarks devoted to concepts evolution
learning. It shows the very good results compared to the best
incremental classifiers of the state of the art. This classifier
and its dynamic supervised learning procedure are dedicated
to classification tasks into data streams especially when con-
cepts are evolving over the time (concept drift, extension,

10 One book of 400 pages in online learning will have an approximate
cost of 10 and of 14s for, respectively, quality and content learning.
11 Particularly, the time needed for reading files (models of SVM, fea-
tures, etc.) has a huge impact.
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splitting/merging, new concepts). For a better illustration, we
developed the study in the context of a classification task over
a stream of digitized document. This contextualization is due
to the DIGIDOC project; expected to define the functionali-
ties of a self-adaptive scanners able to suggest automatically
(under the supervision of an operator) the best parameters of
the scanner to obtain better digitized images according to get
the best suited images depending the objectives (quality and
content). In such context, the operator can accept sugges-
tions from the scanner or correct it including the possibility
to change concepts associated with protocols (creating new
classes, merging them, etc.).

Thanks to the selection of convenient support vectors and
the independent concepts modelization with one-class mod-
els, the classifier can easily learn, even with few data, its new
configuration and canbe adapted very quickly to concept evo-
lution. Indeed, the system presents a high plasticity in many
situations like addition of new concepts, extension/reduction
of concepts, concept drift, splitting, andmerging of concepts.
The wide spectrum of experiments done here has shown that
the system can be used with online learning procedure or
with batch learning. In all cases, the accuracy obtained after
a given number of learning steps is the same as the one that
is obtained with a classical static learning procedure using
directly, in one step, all data encountered in the stream. Dur-
ing the digitization process, some classes can be positively or
negatively affected due to some confusions that can be intro-
duced or removed in the feature space representation. This is
especially true when changes are proposed by the user when
very few data are available.

The learning scheme presented here can be improved in
several ways. First, to get a trade-off between plasticity and
stability, we intend to keep an history of support vectors used
over the time and to give them some weights according to
their “activation” during data stream processing. We also
intend to take benefits of one-class independent modeling
to help the user who interacts with the system, especially
in case of concept evolution. For example, rejection rules
can be efficiently used to detect new concepts. Confusions
between classes can also be used to propose some merg-
ing of concepts. We also expect to use dedicated feature
sub-space for each one-class model, in order to limit the
lack of discriminative power of such one-class classifiers
and to achieve an accuracy much closer to the accuracies
of discriminative approaches. Finally, we intend to evalu-
ate the approach on other benchmarks and also on real data
streams.
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