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a b s t r a c t 

In this paper, a new binary linear programming formulation for computing the exact Graph Edit Dis- 

tance (GED) between two graphs is proposed. A fundamental strength of the formulations lies in their 

genericity since the GED can be computed between directed or undirected fully attributed graphs. More- 

over, a continuous relaxation of the domain constraints in the formulation provides an efficient lower 

bound approximation of the GED. A complete experimental study that compares the proposed formula- 

tions with six state-of-the-art algorithms is provided. By considering both the accuracy of the proposed 

solution and the efficiency of the algorithms as performance criteria, the results show that none of the 

compared methods dominate the others in the Pareto sense. In general, our formulation converges faster 

to optimality while being able to scale up to match the largest graphs in our experiments. The relaxed 

formulation leads to an accurate approach that is 12% more accurate than the best approximate method 

of our benchmark. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Graphs are data structures that can describe complex entities

through their elementary components (the vertices of the graph)

and the relational properties between them (the edges of the

graph). For attributed graphs, both vertices and edges can be char-

acterized by attributes that can vary from nominal labels to more

complex descriptions such as strings or feature vectors. This ar-

rangement leads to very powerful representations that are used in

many application domains such as computer vision, biology, chem-

istry or text processing. Computing the dissimilarity of such graphs

is a crucial issue for graph-based pattern recognition. An enor-

mous number of algorithms have been proposed in the literature

to solve this problem. They can be categorized as embedding-based

vs. matching-based methods. 

In embedding-based methods , the key-idea is to project the in-

put graphs to be compared into a vector space. Then, a norm is

computed in this space. Thus, such methods bridge the gap be-

tween statistical and structural pattern recognition [1,2] . A natu-

ral way to perform this projection is to compute a feature vec-

tor for each graph to be compared [3–6] . Another type of graph-
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mbedding approach consists of representing the graphs as vec-

ors of distances to a number of graph prototypes [7] , but the

mbedding of the graphs requires itself a dissimilarity compu-

ation method. Graph kernels [8–10] can also be considered as

mbedding-based approaches since they produce an implicit em-

edding of the graphs into a Hilbert space. All of these embedding-

ased methods are generally computationally effective since they

o not involve a matching process. However, they do not take into

ccount the complete relational properties and do not provide a

atching between the graphs. 

In matching-based methods the similarity between two graphs

equires the computation and the evaluation of the “best” match-

ng between them. Since exact isomorphism rarely occurs in pat-

ern analysis applications, the matching process must be error-

olerant, i.e., it must tolerate differences in the topology and/or

n its labeling. To tackle this problem, spectral methods such as

11] have been studied. They are based on the eigen decomposition

f the adjacency or Laplacian matrix of a graph. In this spectral

ramework, the graphs are unlabeled or only severely constrained

abel alphabets. Another well known error-tolerant matching-based

ethod that can be used to evaluate the dissimilarity between two

raphs is the Graph Edit Distance (GED) [12] . In this method, a set

f graph edit operations is introduced black. Each edit operation is

haracterized by a cost, and the GED is the total cost of the least

xpensive sequence of operations that transforms one graph into

he other. The GED is a dissimilarity measure for arbitrarily struc-
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ured and/or labeled graphs. In contrast with other approaches, it

oes not suffer from any restriction and can be applied to any type

f graph, including hypergraphs [13] . The GED has been used in

any applications, e.g., malware detection [14] , chemioinformatics

15] , or document analysis [16] . 

A main usability limitation of the GED is its computational

omplexity since it is known to be NP-complete [17,18] . Comput-

ng the exact GED using A 

∗ is exponential in the number of nodes

nd is only feasible for graphs of a rather small size (typically 10

odes). To overcome this limitation, many contributions have been

roposed over the last decade. Some are based on the proposition

f new heuristics to improve the performance of exact approaches

19,20] whereas others have proposed faster but suboptimal meth-

ds that approximate the exact GED (e.g., [21–26] ). 

In this paper, we tackle the GED problem using Binary Linear

rogramming (BLP). Starting from a straightforward linear formu-

ation of the GED, we derive a new exact BLP. This program is the-

retically shown to be equivalent to the first approach (i.e., it com-

utes the exact GED) and experimentally shown to be more effec-

ive. We also show that a relaxation of the domain constraints in

his new formulation provides an efficient lower bound which can

e used as an accurate approximation of the GED. 

The performance of both the exact formulations and their ap-

roximations are compared with those of six exact and approx-

mate approaches, including a previous BLP-based approach pro-

osed in [27] . Each method is evaluated from both the precision

nd the efficiency point of view. For the sake of equality, all of

he methods use the same edit operation cost values. These values

re taken from reference work in the literature [7,15,28] . The ex-

eriments are performed on seven reference datasets which were

arefully chosen to show the behaviors of the approaches on dif-

erent types of graphs [28–30] . 

The results show that the new BLP formulation can com-

ute an exact GED on larger graphs than the existing approaches

nd can compute the GED between richly attributed graphs (i.e.,

ith attributes on both the vertices and edges), which cannot be

andled using the BLP formulation proposed in [27] . They also

how that our relaxed formulation is more accurate than recent

pproximation-based approaches, at the cost of extra computa-

ional time. 

Section 2 presents the important definitions that are necessary 

or introducing our formulations of the GED. Then, Section 3 re-

iews the existing approaches for computing the GED with exact

nd approximate methods. Section 4 describes the proposed BLP

ormulations. Section 5 presents the experiments and analyzes the

btained results. Section 6 provides the study’s conclusions. 

. Problem statement 

efinition 1. An attributed graph G is a 4-tuple G = (V, E, μ, ξ ) ,

here V is a set of vertices; E is a set of edges such that ∀ e =
(i, j) ∈ E, i ∈ V and j ∈ V ; μ: V → L V is a vertex labeling function

hat associates a label μ( v ) to v ∈ V , where L V is the set labels for

he vertices, and ξ : E → L E is an edge labeling function that as-

ociates a label ξ ( e ) to e ∈ E , where L E is the set of labels for the

dges. 

The vertices (resp. edges) label space L V (resp. L E ) could be

omposed of any combination of numeric, symbolic or string at-

ributes. A graph G is said to be simple if it has no loop (an edge

hat connects a vertex to itself) and no multiedge (several edges

etween the same vertices). In this case, E ⊆ {( i, j ) ∈ V × V / i � = j }

nd an edge can be unambiguously designated by the pair of

ertices that it connects. Otherwise, G is a multigraph and E is

 multiset. A graph G is said to be undirected if the relation E

s symmetric, i.e., if its edges have no orientation. In this case,
 (i, j) ∈ E, ( j, i ) ∈ E and (i, j) = ( j, i ) . Otherwise, G is a directed

raph. Hence, Definition 1 allows us to handle arbitrarily structured

raphs (directed or undirected, simple graphs or multigraphs) with

nconstrained labeling. 

The GED is commonly used to measure the dissimilarity be-

ween two graphs. The GED is an error-tolerant graph matching

ethod. It defines the dissimilarity of two graphs by the minimum

mount of distortion that is required to transform one graph into

nother [12] . 

efinition 2. The graph edit distance d (., .) is a function 

 : G × G → R 

+ 

(G 1 , G 2 ) �→ d(G 1 , G 2 ) = min 

(o 1 , ... ,o k ) ∈ �(G 1 ,G 2 ) 

k ∑ 

i =1 

c( o i ) 

here G 1 = (V 1 , E 1 , μ1 , ξ1 ) and G 2 = (V 2 , E 2 , μ2 , ξ2 ) are two graphs

rom the set G and �( G 1 , G 2 ) is the set of all edit paths o =
(o 1 , . . . , o k ) that allow transforming G 1 to G 2 . An elementary edit

peration o i is one of vertex substitution ( v 1 → v 2 ), edge substi-

ution ( e 1 → e 2 ), vertex deletion ( v 1 → ε), edge deletion ( e 1 → ε),

ertex insertion ( ε → v 2 ) and edge insertion ( ε → e 2 ) with v 1 ∈ V 1 ,

 2 ∈ V 2 , e 1 ∈ E 1 and e 2 ∈ E 2 . Here, ε is a dummy vertex or edge that

s used to model the insertion or deletion. Additionally, c (.) is a

unction that associates a cost to each elementary edit operation

 i . 

The cost function c (.) is of primary interest for the GED com-

utation and can change the problem that is being solved. In

31,32] , a particular cost function for the GED is introduced, and

t is shown that under this cost function, the GED computation is

quivalent to the maximum common subgraph problem. Neuhaus

nd Bunke [33] have shown that if each elementary operation sat-

sfies the criteria of a distance (separability, symmetry and trian-

ular inequality) then the edit distance defines a metric between

raphs. Recently, some methods have been proposed to learn the

atching edit cost between graphs [34,35] . The discussion around

he cost functions is beyond the topic of this paper, which focuses

n GED computation for given costs. 

When the GED is computed between the attributed graphs, the

dit costs are usually defined as functions of the vertices (resp.

dges) attributes. More precisely, substitution costs are defined as

 function of the attributes of the substituted vertices (resp. edges),

hereas insertion and deletion are penalized with a value that is

inked to the attributes of the inserted/deleted vertex (resp. edge).

n our experiments, we set the cost function to the values pro-

osed in [7] . 

. Related works 

The GED has been the subject of many contributions in the

iterature, including some very complete surveys of existing ap-

roaches [36,37] . These reviews usually distinguish exact ap-

roaches from approximations. 

.1. Exact approaches 

The first family of exact computation of the GED is based on

he widely known A 

∗ algorithm. This algorithm relies on the explo-

ation of the tree of solutions. In this tree, each node corresponds

o a partial edition of the graph. A leaf of the tree corresponds to

n edit path that transforms one graph into the other. The explo-

ation of the tree is guided by developing the most promising ways

n the basis of an estimation of the GED. For each node, this esti-

ation is the sum of the cost associated with the partial edit path

nd an estimation of the cost for the remaining path. The latter

s given by a heuristic. Provided that the estimation of the future
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cost is lower than or equal to the real cost, an optimal path from

the root node to a leaf node is guaranteed to be found [38] . A sim-

ple way to fulfill this constraint would be to set the estimation

of the future cost to zero, but this setting could lead to exploring

the whole tree of solutions. The other extreme consists of comput-

ing the real cost for the remaining edit path and would require an

exponential amount of time. Indeed, the smaller the difference be-

tween the estimation and the real future cost is, the smaller the

number of nodes that will be expanded by the A 

∗ algorithm. The

different A 

∗-based methods published in the literature mainly dif-

fer in the implemented heuristics for the future cost estimation

which correspond to different tradeoffs between the approxima-

tion quality and their computation time [19,20] . 

In another family of algorithms, the GED is computed by solv-

ing a BLP. To the best of our knowledge, Almohamad and Duf-

fuaa [39] proposed the first BLP formulation of the weighted graph

matching problem. It consists of determining the permutation ma-

trix that minimizes the L 1 norm of the difference between the ad-

jacency matrix of the input graph and the permuted adjacency ma-

trix of the target graph. More recently, Justice and Hero [27] also

proposed a BLP formulation of the GED problem. The proposed

program searches for the permutation matrix that minimizes the

cost of transforming G 1 into G 2 , with G 1 and G 2 two unweighted

and undirected graphs. The criterion to be minimized ( Eq. (1) ) ac-

counts for the costs for the matching vertices, but the formulation

does not integrate the ability to process graphs with labels on their

edges. 

d(G 1 , G 2 ) = min 

P 

n ∑ 

i =1 

n ∑ 

j=1 

c(l(A 

i 
1 ) , l(A 

j 
2 
)) P i, j 

+ 

1 

2 

c(0 , 1) | A 1 − PA 2 P 
T | i j (1)

where A k is the adjacency matrix of G k , and P is an orthogonal

permutation matrix such that P P T = P T P = I, l(A 

i 
k 
) is the label of

the i th vertex in G k , while c is a cost function. A mathematical

transformation is used to transform this non linear optimization

problem into a linear problem. 

In the proposed formulation, the number of constraints and

variables grows quadratically with the number of vertices in the

graphs, and thus, it could impact considerably the memory con-

sumption of the program. Moreover, the modeling of the graphs

by means of an adjacency matrix restricts the formulation to the

processing of simple graphs. 

3.2. Approximations 

Considering that exact computation of the GED can be per-

formed in a reasonable amount of time only for small graphs, and

many researchers have focused their effort on the computation of

the GED approximations in polynomial time. For example, in their

paper [27] , Justice and Hero proposed a lower bound of the GED

that can be computed in O((n 1 + n 2 ) 
7 ) , where n 1 = | V 1 | and n 2 =

| V 2 | , by extending the domain of variables in P from {0, 1} to [0, 1].

In the same paper, an upper bound was proposed by reducing the

GED problem to the Linear Sum Assignment Problem (LSAP). The

LSAP can be solved by the Hungarian method (also called Munkres

assignment algorithm [40] ) in polynomial time O(n 3 ) where n is

the dimension of the vertex assignment cost matrix. The cost ma-

trix of dimension n 1 + n 2 was filled due to the first term of Eq. 1 .

In the same direction, Riesen et al. [23] proposed to enrich the as-

signment cost matrix with the edge edit costs. Finally, the vertex

assignment was used to derive an edit path, and its associated cost

is an upper bound of the GED. 

In [24] , Neuhaus et al. proposed two other approximations

based on A 

∗ method. The first one, called A 

∗-BeamSearch, proposed
o prune the tree of solutions by limiting the number of concur-

ent partial solutions to the q most promising solutions. At the

nd of the algorithm, a valid edit path and its associated cost are

rovided, but there is no guarantee that it corresponds to the op-

imal path, since the latter could have been eliminated in earlier

teps of the algorithm. The parameter q manages the trade-off be-

ween the combinatorial cost and the quality of the approximation.

his method provides an upper bound of the exact GED. In the

ame paper, a method called A 

∗-Pathlength is proposed to speed

p the access to a leaf node in the tree of solutions by giving a

igher exploration priority to long partial edit paths. This strategy

s motivated by the observation that first assignments are the most

omputationally expensive and that they are rarely called into

uestion. 

More recently, in [41] , the vertex assignment computed by

eans of bipartite graph matching is used as an initialization step

or a genetic algorithm that attempts to improve the quality of

he approximation. Indeed, from any vertex assignment, it is pos-

ible to derive an edit path and finally compute its cost [23] . The

ertex assignment that is optimal in terms of vertex substitution

s not always optimal for the whole edit path. The initial pop-

lation is generated by deriving mappings that are mutated ver-

ions of the mapping that has been determined by the Hungarian

lgorithm. The probability of a vertex mapping to be selected is

inked to the vertex substitution cost. The lower the corresponding

dit distance is, the better the individual fits the objective func-

ion. The genetic algorithm iterates by selecting and mixing several

appings. 

Fischer et al. [20] proposed to integrate in the A 

∗ algorithm a

euristic based on a modified Hausdorff distance. This distance is

omputed in a time complexity of O(n 1 .n 2 ) . This heuristic has also

een used on its own without the A 

∗ algorithm in [21] . GED ap-

roximations have also been proposed in a probabilistic framework

25] . Thus, the objective is to find the vertex assignment that max-

mizes the a posteriori probability while considering the vertex at-

ributes. However, the corresponding heuristics are unbounded and

annot be exploited by branch and bound algorithms to prune the

ree of solutions or to efficiently prioritize its exploration in the A 

∗

lgorithm. 

. Graph edit distance using binary linear programming 

In this article, the GED problem is modeled by a BLP which is

 restriction of integer linear programming (ILP) in which the vari-

bles are binary. Hence, its general form is the following: 

in 

x 
c T x (2a)

ubject to Ax ≤ b (2b)

 ∈ { 0 , 1 } n (2c)

here c ∈ R 

n , A ∈ R 

n ×m and b ∈ R 

m are data of the problem. A fea-

ible solution is a vector x of n binary variables (2c) that respects

inear inequality constraints (2b) . If the program has at least one

easible solution, then the optimal solutions are the solutions that

inimize the objective function (2a) , which is a linear combination

f variables of x weighted by the components of the vector c . 

In this section, we present some formulations that were writ-

en for GED computation. The first is a straightforward formula-

ion deduced from Definition 2 whereas the second is more refined,

ith fewer variables and constraints. The third concerns undi-

ected graphs. Then, we discuss how the formulations are solved,

nd the impact of their differences on performance issues. We also

how that relaxing formulations can provide a lower bound of the

ED. 
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Table 1 

Notations for the GED framework. 

Edit operation Variable Cost 

Substitution of vertex i by vertex k x i,k c i,k 
Deletion of vertex i u i c i , ε
Insertion of vertex k v k c ε, k 

Substitution of edge ij by edge kl y ij,kl c ij,kl 

Deletion of edge ij e ij c ij , ε
Insertion of edge kl f kl c ε, kl 
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.1. Modeling the GED problem as a BLP 

.1.1. Variable and cost functions definitions 

Our goal is to compute the GED between two graphs G 1 =
(V 1 , E 1 , μ1 , ξ1 ) and G 2 = (V 2 , E 2 , μ2 , ξ2 ) . In this section, for the

ake of simplicity of notations, G 1 and G 2 are simple directed

raphs. However, the formulations can be applied without modi-

cation to multigraphs, and with some slight modifications in the

ndirected case (these modifications are explained in Section 4.3 ). 

In Definition 2 , the edit operations that are allowed to transform

he graphs G 1 and G 2 are (i) the substitution of a vertex (respec-

ively, an edge) of G 1 with a vertex (resp. an edge) of G 2 , (ii) the

eletion of a vertex (or an edge) from G 1 and (iii) the insertion of a

ertex (or an edge) in G 1 . In Table 1 , we define a set of binary vari-

bles for each of these edit operations. For example, we are given

wo sets of vertices V 1 and V 2 , where i a vertex from V 1 , which is

ubstituted with k a vertex from V 2 has an edit cost of c i, k . Vari-

ble x i,k = 1 if a vertex i is substituted with a vertex k and it is 0

therwise. The concept holds true for the other variables. 

Using these notations, an edit path between G 1 and G 2 is de-

ned as a 6-tuple ( x, y, u, v, e, f ) where x = (x i,k ) (i,k ) ∈ V 1 ×V 2 
, y =

(y i j,kl ) (i j,kl) ∈ E 1 ×E 2 
, u = (u i ) i ∈ V 1 , e = (e i j ) i j∈ E 1 , v = (v k ) k ∈ V 2 and f =

( f kl ) kl∈ E 2 (see Table 1 for the definition of each variable). 

To evaluate the global cost of an edit path, the elementary costs

or each edit operation must be defined. The notations used for

hese costs are given in Table 1 . These cost functions traditionally

epend on the labels of the vertices and edges. As stated before,

efining these cost functions is out of the scope of our contribu-

ions and reference definitions are used in our experiments. 

.1.2. Objective function 

The objective function (3) to be minimized is the overall cost

nduced by an edit path ( x, y, u, v, e, f ) that transforms graph G 1 

nto graph G 2 . 

( x , y , u , v , e , f ) = 

∑ 

i ∈ V 1 

∑ 

k ∈ V 2 
c i,k · x i,k + 

∑ 

i j∈ E 1 

∑ 

kl∈ E 2 
c i j,kl · y i j,kl + 

∑ 

i ∈ V 1 
c i,ε · u i

+ 

∑ 

k ∈ V 2 
c ε,k · v k + 

∑ 

i j∈ E 1 
c i j,ε · e i j + 

∑ 

kl∈ E 2 
c ε,kl · f kl 

(3)

.1.3. Constraints 

The constraints are designed to guarantee that the admissible

olutions of the BLP are edit paths that transform G 1 in G 2 . An

dit path is considered to be admissible if and only if the follow-

ng conditions are respected. (i) It provides a one-to-one mapping

etween a subset of the vertices of G 1 and a subset of the ver-

ices of G 2 . This one-to-one mapping is equivalent to vertex sub-

titution. The remaining vertices are either deleted or inserted. (ii)

t provides a one-to-one mapping between a subset of the edges

f G 1 and a subset of the edges of G 2 . This one-to-one mapping

s equivalent to edge substitution. The remaining edges are either

eleted or inserted. (iii) The vertex mappings and edge mappings

re consistent, i.e., the graph topology is respected. 
(i) Vertex mapping constraints The constraint (4) ensures that

each vertex of G 1 is either mapped to exactly one vertex of

G 2 or deleted from G 1 , while the constraint (5) ensures that

each vertex of G 2 is either mapped to exactly one vertex of

G 1 or inserted in G 1 : 

u i + 

∑ 

k ∈ V 2 
x i,k = 1 ∀ i ∈ V 1 (4)

v k + 

∑ 

i ∈ V 1 
x i,k = 1 ∀ k ∈ V 2 (5)

(ii) Edges mapping constraints The constraints (6) and

(7) guarantee a valid mapping between the edges: 

e i j + 

∑ 

kl∈ E 2 
y i j,kl = 1 ∀ i j ∈ E 1 (6)

f kl + 

∑ 

i j∈ E 1 
y i j,kl = 1 ∀ kl ∈ E 2 (7)

(iii) Topological constraints The respect of the graph topology

in the mapping is described in the following proposition : 

roposition 1. An edge ij ∈ E 1 can be mapped to an edge kl ∈ E 2 only

f the head vertices i ∈ V 1 and k ∈ V 2 , and tail vertices j ∈ V 1 and l ∈ V 2 ,

re respectively mapped. 

This quadratic constraint is expressed linearly with constraints

8) and (9) : 

• ij and kl can be mapped only if their head vertices are mapped:

y i j,kl ≤ x i,k ∀ (i j, kl) ∈ E 1 × E 2 (8)

• ij and kl can be mapped only if their tail vertices are mapped:

y i j,kl ≤ x j,l ∀ (i j, kl) ∈ E 1 × E 2 (9)

Eqs. (8) and (9) contribute not only to edge substitutions,

ut also to edge deletions and insertions. Let i ∈ V 1 such that i

s deleted from G 1 ( u i = 1 ). Using Eq. (4) , we deduce that ∀ k ∈
 2 , x i,k = 0 . Then, using Eq. (8) , ∀ j ∈ V 1 such that ij ∈ E 1 and ∀ kl ∈ E 2 ,

 i j,kl ≤ x i,k = 0 and, using Eq. (6) , e i j = 1 , which deletes edge ij .

onsequently, if i ∈ V 1 is deleted from G 1 , then all of the edges

j ∈ E 1 are deleted from G 1 . Similarly, if k ∈ V 2 is inserted into G 1 ,

hen all of the edges kl ∈ E 2 are inserted into G 1 . These two proper-

ies also hold true for the tail vertices, which ensures a consistent

dge mapping between the two sets E 1 ∪ ε and E 2 ∪ ε. 

.1.4. Straightforward formulation F1 

Placing Eqs. (3) –(9) together with domain constraints that en-

ure that the solution is made of binary variables leads to a

traightforward version of the BLP formulation called F1. This for-

ulation F1 has | V 1 | + | V 2 | + | E 1 | + | E 2 | + | V 1 | · | V 2 | + | E 1 | · | E 2 | vari-

bles and | V 1 | + | V 2 | + | E 1 | + | E 2 | + 2 · | E 1 | · | E 2 | constraints (with-

ut the domain constraints). 

.2. Reducing the size of the formulation 

In this subsection, we present a second exact formulation of

he GED called F2, which has been derived from the formulation

1. We show that this formulation is theoretically equivalent to F1

nd that it reduces the number of variables and the number of

onstraints. 

.2.1. Reducing the number of variables 

The mapping constraints (4) –(7) can be transformed into in-

quality constraints, without changing their role in the program:
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∑ 

k ∈ V 2 
x i,k ≤ 1 ∀ i ∈ V 1 (10)

∑ 

i ∈ V 1 
x i,k ≤ 1 ∀ k ∈ V 2 (11)

∑ 

kl∈ E 2 
y i j,kl ≤ 1 ∀ i j ∈ E 1 (12)

∑ 

i j∈ E 1 
y i j,kl ≤ 1 ∀ kl ∈ E 2 (13)

Replacing in Eq. (3) the variables u, v, e and f by their expres-

sions deduced from Eqs. (4) to (7) , we get a new objective func-

tion: 

C ′ ( x , y ) = 

∑ 

i ∈ V 1 

∑ 

k ∈ V 2 
(c i,k − c i,ε − c ε,k ) · x i,k 

+ 

∑ 

i j∈ E 1 

∑ 

kl∈ E 2 
(c i j,kl − c i j,ε − c ε,kl ) · y i j,kl + γ

(
with γ = 

∑ 

i ∈ V 1 
c i,ε + 

∑ 

k ∈ V 2 
c ε,k + 

∑ 

i j∈ E 1 
c i j,ε + 

∑ 

kl∈ E 2 
c ε,kl 

)
(14)

Equation (14) shows that the GED can be obtained without ex-

plicitly computing the variables u, v, e and f . Once the formulation

solved, all insertion and deletion variables can be a posteriori de-

duced from the substitution variables. 

4.2.2. Reducing the number of constraints 

In the formulation F1, the number of topological constraints,

(8) and (9) , is | E 1 | · | E 2 |. Therefore, on average, the number of con-

straints grows quadratically with the density of the graphs. We

show that it is possible to formulate the GED problem with poten-

tially less constraints, leaving the set of solutions unchanged. To

this end, we mathematically express Proposition 1 in another way.

We replace the constraints (8) and (9) by the following ones: 

• Given an edge ij ∈ E 1 and a vertex k ∈ V 2 , there is at most one

edge whose initial vertex is k that can be mapped with ij : ∑ 

kl∈ E 2 
y i j,kl ≤ x i,k ∀ k ∈ V 2 , ∀ i j ∈ E 1 (15)

• Given an edge ij ∈ E 1 and a vertex l ∈ V 2 , there is at most one

edge whose terminal vertex is l that can be mapped with ij : ∑ 

kl∈ E 2 
y i j,kl ≤ x j,l ∀ l ∈ V 2 , ∀ i j ∈ E 1 (16)

Proposition 2. Let �1 be the set of edit paths (between G 1 and G 2 )

implied by the set of admissible solutions of F1, and let �2 be the

set of edit paths obtained similarly by replacing in F1 the constraints

(8) and (9) by the constraints (15) and (16) . Then, �1 = �2 . 

Proof. �2 ⊆ �1 : Let ij ∈ E 1 and kl ∈ E 2 , and let us suppose that

(15) is satisfied. 

x i,k ≥
∑ 

kl ′ ∈ E 2 
y i j,kl ′ ⇒ x i,k ≥ y i j,kl + 

∑ 

kl ′ ∈ E 2 ,kl ′ � = kl 

y i j,kl ′ ⇒ x i,k ≥ y i j,kl 

Thus, constraint (8) is satisfied for all ij ∈ E 1 and for all kl ∈ E 2 .

Similarly, we deduce that (9) is satisfied using the constraint (16) . 

�1 ⊆ �2 : Let ij ∈ E 1 and k ∈ V 2 . If { l ∈ V 2 : kl ∈ E 2 } = ∅ , then∑ 

kl∈ E 2 y i j,kl = 0 , and (15) is satisfied. Otherwise, using constraint

(8) , we have the following: 

∀ kl ∈ E 2 , x i,k ≥ y i j,kl ⇒ x i,k ≥ max 
kl∈ E 2 

(y i j,kl ) 

(6) ensures that card { l ′ ∈ V 2 : y i j,kl = 1 } ≤ 1 , and thus,

max kl ′ ∈ E 2 (y i j,kl ′ ) = 

∑ 

kl ′ ∈ E 2 y i j,kl ′ ⇒ x i,k ≥
∑ 

kl ′ ∈ E 2 y i j,kl ′ and (15) is

still satisfied. 
k
Thus, the constraint (15) is satisfied for all ij ∈ E 1 and for all

 ∈ V 2 . Similarly, we prove that (16) is satisfied using (9) and

7) . �

The number of topological constraints, (15) and (16) , is now

 E 1 | · | V 2 |. On average, it grows linearly with the density of the

raphs. This relationship leads to substantially shorter formulations

f the GED as the numbers of graph vertices and edges grow. In

ddition, we prove that the constraints (12) and (13) are not neces-

ary to the formulation of the GED problem, since they are implied

y other constraints of the BLP. 

roposition 3. Constraint (12) is implied by (10) and (15) 

roof. Let ij ∈ E 1 . Given (15) , we have ∑ 

l∈ E 2 
y i j,kl ≤ x i,k ∀ k ∈ V 2 ⇒ 

∑ 

k ∈ V 2 

∑ 

kl∈ E 2 
y i j,kl ≤

∑ 

k ∈ V 2 
x i,k 

We reduce the left term of this inequation and use (10) : ∑ 

l∈ E 2 
y i j,kl ≤

∑ 

k ∈ V 2 
x i,k ≤ 1 

Thus, (12) is implied by (10) and (15) . Similarly, we prove that

13) is implied by (11) and (16) . �

.2.3. Simplified formulation F2 

The results obtained in Sections 4.2.1 and 4.2.2 show that the

ED problem can be solved using (14) as the objective function

nd (10), (11), (15) and (16) as the constraints. We have finally ar-

ived at a new formulation F2 of the GED problem, as follows: 

in 

x , y 

(∑ 

i ∈ V 1 

∑ 

k ∈ V 2 

(
c i,k − c i,ε − c ε,k 

)
· x i,k 

+ 

∑ 

i j∈ E 1 

∑ 

kl∈ E 2 

(
c i j,kl − c i j,ε − c ε,kl 

)
· y i j,kl 

)
+ γ (17a)

ubject to 

∑ 

k ∈ V 2 
x i,k ≤ 1 ∀ i ∈ V 1 (17b)

∑ 

i ∈ V 1 
x i,k ≤ 1 ∀ k ∈ V 2 (17c)

∑ 

kl∈ E 2 
y i j,kl ≤ x i,k ∀ k ∈ V 2 , ∀ i j ∈ E 1 (17d)

∑ 

kl∈ E 2 
y i j,kl ≤ x j,l ∀ l ∈ V 2 , ∀ i j ∈ E 1 (17e)

Here, γ is not a function of x and y . It does not impact the

inimization problem. However, γ is mandatory to obtain the GED

alue. 

The formulation F2 has | V 1 | · | V 2 | + | E 1 | · | E 2 | variables and

 V 1 | + | V 2 | + 2 | V 2 | · | E 1 | constraints. The domain constraints have

ot been account for because they are, by design, part of the BLP

ramework. 

.3. Extension to undirected graphs 

Suppose that G 1 and G 2 are undirected graphs, i.e., their edges

ave no orientation. The notations ij and ji refer to the same edge

f E 1 and kl and lk refer to the same edge of E 2 . This new assump-

ion leads to revise the sets of constraints (17d) and (17e) into the

ollowing single constraint: ∑ 

l∈ E 2 
y i j,kl ≤ (x i,k + x j,k ) ∀ k ∈ V 2 , ∀ i j ∈ E 1 (18)
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1 https://brunl01.users.greyc.fr/CHEMISTRY/index.html . 
2 https://iapr-tc15.greyc.fr/links.html . 
Indeed, given an edge ij ∈ E 1 and a vertex k ∈ V 2 , there is at most

ne edge that is incident to k that can be matched to ij . Moreover,

 i, k and x j, k cannot be simultaneously equal to 1, and thus, the

um x i,k + x j,k is at most equal to 1. 

.4. Comparing the solving of F1 and F2 and obtaining lower bounds 

In the previous subsection, the objective functions of F1 and F2

re equal. Furthermore, Propositions 1 and 2 demonstrated that the

et of constraints of F1 and F2 describes the exact same set of ad-

issible solutions. Since F1 and F2 are two minimization problems

ith the same objective function over the same set of admissible

olutions, their optimal solution is the same, and when optimal-

ty is reached, the value of their objective functions is the GED.

hus, they are strictly equivalent. However, we have also shown

hat F2 uses fewer variables than F1, and depending on the den-

ity of the graphs, it potentially uses fewer constraints to solve the

ame problem. Thus, in terms of the solution time and the used

emory, they might not behave the same. 

Solving an ILP that is defined using Eqs. (2a) –(2c) is NP-hard

18] , and thus, exploring the entire solution tree would take an ex-

onential amount of time. However, dedicated solvers have been

eveloped to reduce the number of explored solutions and the so-

ution time, by using a branch-and-cut algorithm along with some

euristics [42] . Given an instance of the problem, the solver ex-

lores the tree of solutions with the branch-and-bound algorithm

nd finds the best feasible solution, in terms of the objective func-

ion optimization. 

The continuous relaxation of an ILP is a linear program (LP) in

hich the constraints are unmodified but the variables are now

ontinuous. The LP solution is a lower bound for the solution in

he initial problem. It can be reached in polynomial time O(n 3 . 5 )

ith the interior point method [43] where n is the number of vari-

bles in the model. This lower bound helps the ILP in finding the

olution by pruning the exploration of the solution tree. 

The continuous relaxation complexity is related to the number

f variables and constraints in the model. Since F2 holds fewer

ariables and constraints than F1, the continuous relaxation of F2

s faster to compute. A straightforward effect is that solving the ILP

f F2 might also be faster than F1, since the LP relaxation is used

y the ILP solving methods to cut the unpromising branches. 

An important aspect to be highlighted here is that continuous

elaxation can also be used to approximate the optimal objective

alue in polynomial time. We explore this opportunity in the ex-

erimental part of the paper by calling F1LP (resp. F2LP) the con-

inuous relaxation of F1 (resp. F2). To accomplish this goal, we only

ubstitute the discrete space {0, 1} by the continuous space [0, 1]

n the domain constraints. In the experiments of Section 5 , F1LP

nd F2LP are compared to approximate methods from the litera-

ure. 

. Experiments 

This section aims at evaluating the proposed contributions

hrough a robust experimental study that compares ten methods

n reference datasets. We first describe the methods that have

een studied, the datasets and the protocol. Then, the results are

resented and discussed. 

.1. Studied methods 

In this experimental part, our proposals (F1, F2, F1LP and F2LP)

re compared against six GED algorithms from the literature. From

he related works, we chose two exact methods and four approx-

mate methods. On the exact method side, the A 

∗ algorithm ap-

lied to the GED problem [19] is a foundational work. In our tests,
he heuristic is computed using the bipartite approximation [19] .

 

∗ with a bipartite heuristic is the most well-known exact GED

ethod and is often used to evaluate the accuracy of the approx-

mate methods. The second exact method is the BLP proposed by

ustice and Hero in [27] . This method, called JH in the paper, is

irectly linked to our proposal. Since this method cannot address

dge attributes, we could not perform JH on all of our datasets. 

On the approximate method side, we can distinguish three fam-

lies of methods in the literature: tree-based methods, assignment-

ased methods and set-based methods. For the tree-based meth-

ds, a truncated version of A 

∗ called A 

∗-BeamSearch was cho-

en (BS) using a bipartite heuristic. This method is known to be

ne of the most accurate approximations from the literature [24] .

mong the assignment-based methods, we selected the bipartite

raph matching (BP) that is described in [23] . This upper bound

as shown to be a good compromise between the speed and ac-

uracy. We also added the Fast Bipartite method (FBP) [44] since

t is an extension of BP. FBP has been used to question the com-

unity about the accuracy and speed-up [45] . Finally, we picked

 set-based method proposed in [21] . This method (H) provides a

ower bound of GED that is obtained using Hausdorff matching. 

.2. Datasets 

In this paper, GED algorithms are evaluated on six different

eal world graph datasets and a synthetic dataset. These datasets

ave been chosen by carefully reviewing all of the publicly avail-

ble datasets that have been used in the reference works men-

ioned in Section 3 (LETTER, GREC, COIL, Alkane, FINGERPRINT, PAH,

UTA, PROTEIN and AIDS to name the most frequent datasets).

n the basis of this review, a subset of these datasets has been

hosen to obtain a good representativeness of the different graph

eatures that can affect the GED computation (size, labeling, di-

ected/undirected): 

GREC [29] is composed of undirected graphs that have rather

mall size (i.e., up to 20 vertices). In addition, continuous attributes

n vertices and edges play an important role in the matching pro-

edure. Such graphs are representative of pattern recognition prob-

ems. 

MUTA of molecules [29] is representative of exact matching

roblems because a significant part of the topology together with

he corresponding vertex and edge labels in G 1 and G 2 are re-

uired to be identical. In addition, this set of graphs gathers large

nstances with up to 70 vertices. 

PROTEIN [29] is a molecule dataset similar to MUTA or PRO-

EIN. However, the stringent constraints imposed by exact vertex

atching are relaxed due to the string edit distance. Thus, the

atching process can be tolerant and accommodate to differences

n the labels. 

ILPISO [28] stands apart from the others in the sense that this

ataset holds directed graphs. The aim is to illustrate the flexibility

f our proposal in that it can handle different types of graphs. 

LETTER [29] is broken down into three parts (LOW, MED, HIGH)

hich correspond to distortion levels. Assessing methods according

o the noise level is an interesting viewpoint when addressing pat-

ern recognition problems. The LETTER dataset is useful because it

olds graphs that have a rather small size, which makes feasible

he computations of the GED methods. 

PAH and Alkane 1 are purely structural databases with no labels

t all. 

All of these datasets are publicly available on the IAPR TC15

ebsite. 2 A synthesis that concerns those data is given in Table 2 .

https://brunl01.users.greyc.fr/CHEMISTRY/index.html
https://iapr-tc15.greyc.fr/links.html
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o evaluate the algorithms’ behaviors when the size of the problem

rows, we have built subsets in which all of the graphs have the

ame number of vertices for GREC, MUTA, PROTEIN and ILPISO. The

etails that concern the subset sizes are given in Table 2 . The cost

unctions have a parameter α ∈ [0, 1] that is domain-dependent.

corresponds to the weighting parameter that controls whether

he edit operation cost on the vertices or on the edges is more

mportant. We borrow the settings from [7] for the GREC, PROT,

UTA and LETTER databases and from [15] for the Alkane and PAH

atasets. Elementary operation costs are reported in Table 2 . With

he goal of reproducibility, all of the graph subsets and the code

f the cost function are available at https://sites.google.com/site/

lpged/ . 

.3. Experimental protocol 

Our experiments were conducted in the context of graph com-

arisons. Let S be a graph dataset that consists of m graphs,

 = { G 1 , G 2 , . . . , G m 

} . Let P = P e ∪ P a be the set of all of the GED

ethods listed in Section 5.1 , with P e = { A*, JH, F1, F2 } the set

f exact methods and P a = { BP, BS, FBP, H, F1LP, F2LP } the set of

pproximate methods. The parameter q of BS was set to 10.

iven a method p ∈ P, we computed the square distance matrix

 

p ∈ M m ×m 

(R 

+ ) , which holds every pairwise comparison M 

p 
i, j 

=
 p (G i , G j ) , where the distance d p ( G i , G j ) is the value returned by

he method p on the graph pair ( G i , G j ) within a certain time limit,

hile using the cost metaparameters defined in Table 2 . Due to

he large number of matchings to be computed and the exponen-

ial complexity of the algorithms tested, we allowed a maximum

f 300 s for any distance computation. When the time limit was

ver, the best approximation found thus far was outputted by the

iven method. This time constraint was sufficiently large to allow

he methods to search deeply into the solution space and to ensure

hat many tree nodes were explored. The key idea was to reach

ptimality whenever it was possible or at least to get as close as

ossible to the Graal , the optimal solution that corresponds to the

xact distance. 

Based on this context of pairwise graph comparisons, a set of

etrics is defined to measure the accuracy and speed of all of the

ethods. 

.3.1. Accuracy metrics 

To quantify the error in the approximate methods, we com-

ute an index called the deviation. This index relies on a reference

atrix that holds either the optimal GED whenever it is possible

o compute it, or the lowest approximation found among all the

ethods. In the latter case, the lower bounds (H, F1LP and F2LP)

re removed from the eligible reference methods since they do not

epresent feasible solutions and can not represent real sequences

f edit operations. Hence, the deviation is computed on a subset n

sing Eq. (19) . 

eviation (i, j) p = 

| M 

p 
i, j 

− R i, j | 
R i, j 

, ∀ (i, j) ∈ � 1 , m � 2 , ∀ p ∈ P (19)

here R i, j is defined in Eq. (20) . 

 i, j = min 

p∈P\{ F 1 LP,F 2 LP,H} { M 

p 
i, j 

} , ∀ (i, j) ∈ � 1 , m � 2 (20)

 i, j is either the best upper bound or the optimal solution when

he time available allows its computation. For a given method, the

eviation can express the error made by a suboptimal solution in

erms of the percentage of the best solution. For each subset in-

exed by n , the mean deviation is derived as follows in Eq. (21) :

eviation 

p 
n = 

1 

m × m 

m ∑ 

i =1 

m ∑ 

j=1 

deviation (i, j) p n (21)

https://sites.google.com/site/blpged/


J. Lerouge et al. / Pattern Recognition 72 (2017) 254–265 261 

w  

d  

t  

[

d

w

5

 

t

t  

w  

c

 

t  

(

s

5

 

C  

o  

p  

w  

1  

m  

G  

i  

i

5

 

i  

i  

a  

p

5

 

t  

i  

e  

c  

t  

t  

f  

t  

c  

t  

b

 

p  

q  

i  

l  

 

n
 
a

n
d
 
ru

n
n

in
g
 
ti

m
e
 
o

f 
a

ll
 
o

f 
th

e
 
m

e
th

o
d

s.
 
O

p
t :

: 
P

e
rc

e
n

ta
g

e
 
o

f 
in

st
a

n
ce

s 
so

lv
e

d
 
to
 
o

p
ti

m
a

li
ty

. 
M

e
a

n
 
d

e
v

ia
ti

o
n
 
in
 
%
 
a

n
d
 
m

e
a

n
 
ru

n
n

in
g
 
ti

m
e
 
in
 
m

il
li

se
co

n
d

s.
 
T

h
e
 
lo

w
e

r 
th

e
 
b

e
tt

e
r.
 
O

M
 
st

a
n

d
s 

fo
r 

O
u

t 
o

f 
M

e
m

o
ry

. 
N

A
 
m

e
a

n
s 

li
ca

b
le

. 
B

lu
e

: 
T

h
e
 
b

e
st
 
d

e
v

ia
ti

o
n

s.
 
R

e
d

: 
T

h
e
 
b

e
st
 
ru

n
n

in
g
 
ti

m
e

s.
 
In
 
b

o
ld
 , 

th
e
 
b

e
st
 
d

e
v

ia
ti

o
n

s 
a

m
o

n
g
 
th

e
 
a

p
p

ro
x

im
a

te
 
m

e
th

o
d

s.
 

F
1
 

F
2
 

A
 ∗

JH
 

B
P
 

B
S
 

H
 

F
B

P
 

F
1

LP
 

F
2

LP
 

O
p

t 
D

e
v
 

T
im

e
 

O
p

t 
D

e
v
 

T
im

e
 

O
p

t 
D

e
v
 

T
im

e
 

O
p

t 
D

e
v
 

T
im

e
 

D
e

v
 

T
im

e
 

D
e

v
 

T
im

e
 

D
e

v
 

T
im

e
 

D
e

v
 

T
im

e
 

D
e

v
 

T
im

e
 

D
e

v
 

T
im

e
 

5
1
 

1
9

.4
 

1
9

4
4

2
8
 

1
0

0
 

0
 

3
6

4
 
4
 
4
 

O
M
 

O
M
 

O
M
 

1
0

0
 

0
 

1
5

2
9
 

3
9

8
 

1.
4
 

9
9
 

1
3

9
 

7
9
 

1
 

3
7

0
 

0
 

3
1.

2
 

4
8

5
8
 

2
7.

4
 

1
4

0
3
 

e
 

1
0

0
 

0
 

17
6
 

1
0

0
 

0
 

3
9
 

1
0

0
 

0
 

8
7

2
0
 

1
0

0
 

0
 

1
6

5
 

1
3

3
 

0
.2
 

1
4
 

4
 

7
8
 

0
.4
 

11
1
 

0
 

4
2

.4
 

1
3

8
 

1
8

.7
 

3
8
 

R
 
H

IG
H
 

1
0

0
 

0
 

4
3
 

1
0

0
 

0
 

9
 

1
0

0
 

0
 

3
 

1
0

0
 

0
 

1
3
 

8
.9
 

0
 

4
.5
 

1
 

2
1.

5
 

0
 

2
4
 

0
 

0
.1
 

2
6
 

0
 

8
 

R
 
M

E
D
 

1
0

0
 

0
 

8
 

1
0

0
 

0
 

5
 

1
0

0
 

0
 

1
 

1
0

0
 

0
 

1
0
 

1
3

.2
 

0
 

2
.3
 

1
 

17
.2
 

0
 

2
7
 

0
 

0
 

8
 

0
 

5
 

R
 
L

O
W
 

1
0

0
 

0
 

8
 

1
0

0
 

0
 

5
 

1
0

0
 

0
 

1
 

1
0

0
 

0
 

1
0
 

9
.6
 

0
 

2
.5
 

1
 

2
1.

8
 

0
 

2
8
 

0
 

0
 

8
 

0
 

5
 

 
5
 

1
0

0
 

0
 

4
 

1
0

0
 

0
 

4
 

1
0

0
 

0
 

3
 

N
A
 

N
A
 

N
A
 

1
 

0
 

0
.1
 

2
 

5
.8
 

0
 

5
.9
 

0
 

0
 

4
 

0
 

4
 

 
1

0
 

1
0

0
 

0
 

8
1
 

1
0

0
 

0
 

3
4
 

9
0

.1
 

4
 

3
6

8
3

1
 

N
A
 

N
A
 

N
A
 

4
 

1
 

1
 

3
4
 

6
.8
 

2
 

4
.7
 

1
 

0
.2
 

8
1
 

0
.1
 

3
4
 

 
1

5
 

1
0

0
 

0
 

3
1

9
2
 

1
0

0
 

0
 

5
4

7
 

4
2

.5
 

3
1.

1
 

17
2

8
8

6
 

N
A
 

N
A
 

N
A
 

8
.8
 

2
 

2
.1
 

2
4

5
 

1
2

.1
 

4
 

8
.8
 

2
 

1.
4
 

6
0

7
 

0
.3
 

3
7

2
 

 
2

0
 

9
9

.5
 

0
 

1
2

3
4

7
 

1
0

0
 

0
 

9
8

1
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

5
 

4
 

3
.1
 

9
0

8
 

2
6

.9
 

8
 

5
.2
 

4
 

1.
9
 

11
7

1
 

0
.3
 

6
4

2
 

 
1

0
 

1
0

0
 

0
 

1
2

8
 

1
0

0
 

0
 

5
0
 

O
M
 

O
M
 

O
M
 

1
0

0
 

0
 

8
2
 

2
4

.2
 

1
 

2
.1
 

6
 

5
0

.8
 

1
 

2
3
 

1
 

2
 

1
2

8
 

0
.3
 

5
0
 

 
2

0
 

1
0

0
 

0
 

2
5

6
9

6
 

1
0

0
 

0
 

4
1

5
6
 

O
M
 

O
M
 

O
M
 

1
0

0
 

0
 

9
4

6
 

4
7.

1
 

1
 

1
3

.3
 

9
7
 

5
8

.3
 

2
 

3
9

.2
 

1
 

1
4

.9
 

1
4

7
2
 

6
.2
 

1
0

2
4
 

 
3

0
 

1
6
 

4
.8
 

2
6

5
2

3
7
 

5
2
 

1.
4
 

1
8

5
8

3
0
 

O
M
 

O
M
 

O
M
 

8
6
 

0
 

7
2

5
3

4
 

7
9

.2
 

2
 

2
3

.6
 

5
1

9
 

6
8
 

4
 

6
6

.5
 

1
 

2
2

.6
 

8
0

1
0
 

1
4

.9
 

4
8

9
1
 

 
4

0
 

11
 

1
0

.2
 

2
7

0
0

7
6
 

2
7
 

3
.4
 

2
3

6
7

8
6
 

O
M
 

O
M
 

O
M
 

6
8
 

0
 

1
3

3
9

7
4
 

8
2

.2
 

5
 

2
9

.3
 

1
6

2
0
 

6
8

.1
 

7
 

7
1.

8
 

5
 

2
3

.2
 

2
1

9
17

 
1

4
.1
 

11
7

6
0
 

 
5

0
 

1
0
 

2
3

.2
 

2
7

0
4

6
1
 

11
 

8
.2
 

2
6

8
7

9
5
 

O
M
 

O
M
 

O
M
 

5
0
 

0
 

1
9

3
8

6
9
 

9
8

.2
 

8
 

4
4

.1
 

3
9

6
3
 

7
7.

8
 

1
2
 

8
7.

4
 

8
 

3
1.

6
 

4
3

9
4

5
 

1
8

.8
 

2
2

6
3

0
 

 
6

0
 

1
0
 

2
3

.1
 

2
7

1
6

2
5
 

1
0
 

9
.2
 

2
7

0
1

6
9
 

O
M
 

O
M
 

O
M
 

1
9
 

0
 

2
4
 
9

6
 
8

5
 

9
2

.9
 

1
2
 

3
5

.8
 

8
1

9
8
 

7
4

.2
 

17
 

8
2

.2
 

11
 

3
1.

9
 

9
5

7
1

4
 

1
8

.8
 

4
3

8
2

2
 

 
7

0
 

1
0
 

1
8

.8
 

2
7

3
1

2
4
 

1
0
 

7.
1
 

2
7

0
3

5
9
 

O
M
 

O
M
 

O
M
 

O
M
 

O
M
 

O
M
 

7
8

.9
 

1
8
 

2
7.

2
 

1
5

7
7

3
 

7
9

.9
 

2
3
 

7
3
 

17
 

3
5

.3
 

2
1

2
5

4
5
 

2
5

.2
 

9
7

3
0

4
 

2
0
 

8
3

.1
 

0
 

8
0

0
7

0
 

9
4

.6
 

0
 

3
5

5
7

1
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

3
.2
 

1
3
 

1.
8
 

3
2

0
3
 

1
2

.7
 

2
5
 

1
2

.6
 

1
3
 

1.
2
 

4
7

5
6
 

0
.8
 

2
17

9
 

3
0
 

3
7.

9
 

0
.1
 

2
17

3
3

0
 

7
4
 

0
 

1
3

0
1

3
4
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

5
.7
 

2
7
 

1.
8
 

17
7

4
3
 

1
9

.1
 

5
4
 

6
8

.6
 

2
8
 

1
 

11
6

9
5
 

0
.7
 

5
6

7
2
 

4
0
 

1
0

.9
 

0
.2
 

2
7

3
1

5
9
 

2
1.

5
 

0
 

2
5

5
3

8
2
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

3
.5
 

4
9
 

2
 

5
0

7
3

7
 

1
3

.3
 

9
7
 

1
8

.1
 

5
2
 

1.
9
 

5
8

0
8

7
 

1
.2
 

2
1

8
0

5
 

 
1

0
 

1
0

0
 

0
 

2
3
 

1
0

0
 

0
 

2
2
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

1
6

.6
 

2
 

1
2

.3
 

6
6
 

3
9

.8
 

2
 

17
 

2
 

0
 

2
2
 

0
 

2
1
 

 
2

5
 

9
1.

6
 

0
 

3
1

0
0

1
 

9
1
 

0
.2
 

3
5

4
1

0
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

3
3

.4
 

1
8
 

2
6

.1
 

11
0

5
3
 

5
4

.6
 

3
3
 

3
5

.3
 

1
9
 

7
 

1
4

3
6

7
 

4
.5
 

4
2

5
9
 

 
5

0
 

5
6

.9
 

6
.6
 

1
3

8
8

8
7
 

5
5

.5
 

2
.7
 

1
4

17
5

0
 

O
M
 

O
M
 

O
M
 

N
A
 

N
A
 

N
A
 

2
4

.1
 

2
9

5
 

8
0

.1
 

2
6

0
6

6
5
 

5
9

.4
 

5
5

7
 

2
5

.8
 

3
1

0
 

8
.4
 

1
2

5
9

3
8
 

9
.4
 

11
4

5
9

8
 

here p ∈ P, n ∈ [1 , # subsets ] and deviation (i, j) p n stands for the

eviation computed on subset n . To obtain comparable results be-

ween the datasets, the mean deviations are normalized between

0, 1] using Eq. (22) : 

eviation score 
p = 

1 

# subsets 

# subsets ∑ 

n =1 

deviation 

p 
n 

maxde v n 
(22) 

here maxde v n = max deviation 
p 
n ∀ p ∈ P

.3.2. Speed metrics 

To evaluate the convergence speeds of algorithms, the mean

ime for each dataset is derived as follows in Eq. (23) : 

ime 
p 
n = 

1 

m × m 

m ∑ 

i =1 

m ∑ 

j=1 

time (G i , G j ) 
p 
n (23)

ith (i, j) ∈ � 1 , m � 2 , n ∈ [1 , # subsets ] and time (i, j) p n stands for the

omputing time on subset n . 

Finally, we introduce a last metric called the speed score where

he running time is normalized between [0, 1] as follows in Eq.

24) : 

peed score 
p = 

1 

# subsets 

# subsets ∑ 

n =1 

time 
p 
n 

maxtime n 
(24) 

.3.3. Experimental settings 

In this practical work, BP was provided by the Institute of

omputer Science and Applied Mathematics of Bern, 3 while the

ther methods were re-implemented. All of the methods are im-

lemented in Java 1.7 except for the F1, F2 and JH models which

ere implemented in C# using CPLEX Concert Technology. CPLEX

2.6 was chosen since it is known to be one of the best mathe-

atical programming solvers. All of the methods were run on a 2.6

Hz quad-core computer with 8 GB RAM. For the sake of compar-

son, none of the methods were parallelized and CPLEX was set up

n a deterministic manner. 

.4. Results 

The discussion that concerns the obtained results is organized

nto three parts. First, we compare only exact methods. Then, we

nclude approximate approaches in the discussion. Finally, we draw

 synthesis by comparing all of the methods from a multi-objective

oint of view. 

.4.1. Comparing exact methods 

From a theoretical point of view, the main criterion that charac-

erizes an exact GED computation method is its computation time,

.e., its speed score p . From a practical point of view, solving for the

xact GED can be infeasible in a reasonable amount of time and

an overstep the memory capacity (e.g., using A 

∗). For the execu-

ion time, it is well admitted that a time limit can be set. When

his time limit is reached, the solver returns the best solution

ound thus far, which is not necessarily the optimal solution. Thus,

he deviation deviation score p is computed to characterize the ac-

uracy of the proposed solution. When memory problems occur,

he solver can not return any solution and the deviation can not

e computed. 

The obtained results when comparing only exact methods are

resented in columns 1–4 of Table 3 . Three values are given to

ualify each method of P e on each dataset: the percentage of

nstances solved to optimality (without time or memory prob-

ems), the mean deviations (different from 0 when optimality is
3 http://www.iam.unibe.ch/fki/ . T
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not reached for all the instances) and the running time. If the time

limit of 300 s is reached for some instances, the first value is less

than 100. If the memory limit is reached, then “OM” appears in

the table. The values “NA” means that the algorithm can not be

applied to the dataset. It occurs for JH on GREC, PROT and ILPISO,

since JH formulation does not account for the edge labels. As ex-

pected, A 

∗ is the worst method in Table 3 . It reaches the optimal

solution only for datasets composed of very small graphs (Alkane,

LETTER and GREC10). When the graphs are larger than 10 vertices,

all of the instance are not optimally solved, and the error grows

(reaching for example 30% on GREC-15). Beyond 15 vertices, A 

∗

cannot converge to optimality because of the memory saturation

phenomenon. In fact, the size of the list OPEN that contains pend-

ing solutions grows exponentially according to the graph size and

the bipartite heuristic fails to prune the search tree efficiently. 

When analyzing the F1 and F2 results, it can be seen that

for datasets composed of smaller graphs (Alkane, LETTER, GREC,

MUTA10-20), F1 and F2 both converge to optimality. In these cases,

F2 is faster than F1, with a factor that is between 2 and 6. For

larger graphs (PAH and MUTA), the optimal solution is not always

reached, because of the time restriction. As an example, on PAH,

which contains graphs of up to 24 vertices, the F1 deviation is

not zero and the percentage of optimal solutions is only 51%. On

this dataset, F2 is faster and converges to the optimal solution for

all of the instances. This configuration also occurs for GREC20. For

datasets where both F1 and F2 do not solve all of the instances to

optimality, the deviation is lower for F2 than for F1. The deviation

gap between the two methods can reach 20% on PAH. All of these

results corroborate the theoretical analysis provided in Section 4.4 .

One can highlight that for the largest graphs, F1 and F2 take simi-

lar amount of time. This finding can be explained by the fact that

the time limit is reached for the majority of instances by both

methods. 

JH performs very well in terms of speed and accuracy. For

datasets that gather rather small graphs, such as LETTER, Alkane

and MUTA10, all of the instances are completely solved to optimal-

ity by JH, with a computing time that is slightly worse than using

F2. When the graphs are medium-size (PAH and MUTA20), JH be-

comes faster than F2. For MUTA-30 to MUTA-60, the number of

optimal solutions drastically decreases for every method however

JH could still find 50% of the optimal solutions on MUTA-50 against

11% and 10% for F2 and F1, respectively. Beyond its inability to con-

sider edge labels, the only weakness of JH is a memory exhaustion

phenomenon when the graphs hold 70 vertices. On MUTA-70, JH

could not find any solution for half of the instances while F1 and

F2 find some solutions. This result shows that our proposal can

better scale up to large graphs than the Justice and Hero model

from a memory point of view. This behavior corroborates the the-

oretical statement made in Section 3.1 , in the JH’s model, the num-

ber of constraints and variables grows quadratically as a function

of the number of vertices in the graphs (| V 1 | + | V 2 | ) 2 , and thus,

it does impact considerably the memory consumption of the pro-

gram. 

5.4.2. Comparing approximate methods 

Columns 5 to 10 in Table 3 present the accuracy and time

performance that is observed for approximate methods under

the experimental protocol presented above. The mean deviation

and mean running time are reported for each method on each

subset. For the objective of obtaining a quantitative compari-

son, the accuracy gaps ( deviation p i − deviation p j ) and time ra-

tio ( time p i / time p j ) between the methods are tabulated in Table 4 .

When examining the mean deviation of the methods in P a =
{ BP, BS, FBP, H, F1LP, F2LP } , the main observation is that F1LP and

F2LP are by far the most accurate approximate methods for the

computation of the GED (see Tables 3 and 4 ). More precisely, F2LP
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Fig. 1. A synthesis on deviation and response time. Lowest values are the best. 
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s 4.3% more accurate than F1LP. Because F2LP contains fewer vari-

bles and fewer constraints than F1LP, this observation confirms

hat the time complexity for solving a linear program increases

ith the number of variables and the number of constraints. F2LP

s also 12.1% more accurate than BS which is the most accurate of

he state-of-the-art approximate methods. 

A finer examination according to the type of dataset leads us to

onclude that the smaller the graphs are, the better the approxi-

ation. For small attributed graphs (LETTER, GREC) F2LP leads to

 near-optimal approximation and achieves a very low or null de-

iation. On GREC, the error committed is less than 1%. The devia-

ion of F2LP increases with the size of the graph. It can reach 25%

n PAH or MUTA but remains lower than any other approximate

ethod. 

As it was the case for exact methods, we can also note that the

atasets that are composed of graphs without any label, such as

AH or Alkane, are very difficult to process. However, all of the in-

tances were solved by approximate methods within the time limit

f 300 s. We can then conclude that each method returned its best

ttainable approximation. 

As mentioned earlier, lower bounds are also used by branch-

nd-cut techniques to prune the search space when solving opti-

ization problems. The good performance of F2LP contributes to

xplaining the convergence speed of F2 over F1 as it prunes the

earch space more efficiently. 

Table 3 also reports the average time to compute a graph com-

arison for each method and each subset. All of the approximate

ethods are faster to compute than any of the exact methods.

mong the approximate methods, H, BP and FBP are by far the

astest methods. They provide comparable speed results. Any in-

tance of our datasets is solved by these methods in less than one

econd. The advantage of FBP over BP does not appear clearly. It

an be explained by our experiments protocol. The graphs to be

ompared have comparable size on 14 subsets. When | V 1 | � | V 2 |,

his case corresponds to the FBP worst case because a cost matrix

f size | V 1 | × | V 2 | must be processed. 

The speed gap with other approximate methods (BS, F1LP and

2LP) increases with the size of the graphs. It reaches a factor of

0 0 0 on MUTA-70 between H and F2LP. As conjectured in 4.4 , F2LP

t  
s faster to compute than F1LP, mainly because the former contains

ewer variables and constraints. 

.4.3. Synthesis 

As expected, it can be observed that the exact methods require

ore time than the approximate methods and that the fast meth-

ds often lead to a rough approximation. To illustrate this com-

romise, Fig. 1 presents the speed-deviation performance of each

ethod for the GREC and MUTA. JH could not be applied on GREC

ecause it does not handle labels on edges. On the other hand, A 

∗

oes not appear on MUTA because every instance has led to an

xhaustion of available memory. 

We can notice that F1 and A 

∗ are dominated methods since

hey do not outperform any other method on either deviation or

peed criterion. Other reviewed methods correspond to a com-

romise between speed and accuracy. The choice of a method is

pplication-dependent, if accuracy is a matter then F2 is the most

ppropriate choice. At the opposite, FBP and BP are the fastest

n our benchmark. In between, methods provide speed/accuracy

rade-offs. The results reported in Table 4 corroborate the afore-

entioned observations. 

Generally, our models appear to be quite accurate and outper-

orm in this way other methods from the literature. F2 outperforms

he other methods on all of the datasets in terms of the accu-

acy. The most spectacular improvement is an average gain of 45%

gainst BP, FBP and H. The average deviation gap between F2 and

2LP is only 6% whereas it is 18% between F2 and BS, but for BS, it

s 5 times faster. F2LP is 12% more accurate than BS. 

Finally, we can also state that F1LP and F2LP are not only

pproximately 7 times slower than BP, FBP and H but also ap-

roximately 40% more accurate. Numerical results are detailed in

able 4 . 

. Conclusions 

In this paper, two exact BLP formulations of the GED problem

ave been presented. The first formulation F1 is a didactic ex-

ression of the GED problem, while F2 is a more refined program

here variables and constraints have been condensed to reduce

he search space. Two lower bound approximations of the GED
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(F1LP and F2LP) have been derived from the exact formulations,

using the continuous relaxation technique. Theoretically and prac-

tically speaking, we showed that F2LP is faster to compute than

F1LP. Formulations were evaluated on publicly available databases.

In all cases, F1 and F1LP were slower and less accurate than F2

and F2LP, respectively. This result experimentally validated F2 and

the choice of reducing the number of variables and constraints of

F1. The experimental comparison with the state-of-the-art meth-

ods showed that, among the exact methods that operate under a

time constraint, F2 and JH were the most accurate. When appli-

cable, JH was generally faster, however, it faces excessive memory

needs when the sizes of the graphs grow. The experiments also

showed that the continuous relaxation of the domain constraints

leads to very accurate approximate methods. F2LP is the most ac-

curate approximate method of our benchmark while it holds a

comparative runtime with BS. It is however slower than BP, FBP

and H. Finally, the last point is the generality of our proposal. Our

formulations are the most general in the sense that they can han-

dle different types of attributed relational graphs: directed or undi-

rected graphs, simple graphs or multigraphs, with a combination

of symbolic, numeric and/or string attributes on the vertices and

edges. F2 and F2LP were part of the Graph Distance contest which

was organized in the context of the ICPR 2016 conference. 4 In per-

spective, quadratic programming solvers are obtaining more and

more efficiency and we want to investigate the definition of binary

quadratic programming formulations of the GED problem. Finally,

another interesting task for future research will be to use lower

and upper bounds to build an optimized nearest neighbor search. 
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