
Exact Graph Edit Distance Computation using a
Binary Linear Program

Julien Lerouge1, Zeina Abu-Aisheh2, Romain Raveaux2, Pierre Héroux1, and
Sébastien Adam1

1 Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76000 Rouen,
France

Sebastien.Adam@univ-rouen.fr,
2 LI Tours, Avenue Jean Portalis,

Tours, France

Abstract. This paper presents a binary linear program which computes
the exact graph edit distance between two richly attributed graphs (i.e.
with attributes on both vertices and edges). Without solving graph edit
distance for large graphs, the proposed program enables to process richer
and larger graphs than existing approaches based on mathematical pro-
gramming and the A∗ algorithm. Experiments are led on 7 standard
graph datasets and the proposed approach is compared with two state-
of-the-art algorithms.

Keywords: Graph Edit Distance, Binary Linear Program

1 Introduction

Computing the dissimilarity between two graphs is a crucial issue for graph-based
pattern recognition problems, e.g. malware detection [10], chemoinformatics [5],
or document analysis [2]. A large number of algorithms are proposed in the lit-
erature to compute graph dissimilarity. Among existing approaches, Graph Edit
Distance (GED) has retained a lot of attention during the two last decades. Using
GED, graph dissimilarity computation is directly linked to a matching process
through the introduction of a set of graph edit operations (e.g. vertex insertion,
vertex deletion). Each edit operation being characterized by a cost, the GED is
the total cost of the least expensive sequence of edit operations that transforms
one graph into the other one. A major theoretical advantage of GED is that it
is a dissimilarity measure for arbitrarily structured and arbitrarily attributed
graphs. Moreover, together with the dissimilarity, it provides the corresponding
sequence of edit operations, which can be itself useful for application purpose.
A limitation for the use of GED is its computational complexity. Indeed, as
stated in [22], the GED problem is NP-hard. This explains why many recent
contributions focus on the computation of GED approximations which can be
applied on large graphs. Among existing approximations, some are based on the
proposition of new heuristics to improve the performance of exact approaches
[21, 3] whereas others propose faster but suboptimal methods which approximate



2

the exact GED (e.g. [4, 1, 18, 15, 14, 16, 20]). These latter are faster, but do not
guarantee to find the optimal solution.

In this paper, we are interested in the exact computation of the GED between
two graphs, for a given set of edit costs. In this context, the main family of
existing approaches is based on the widely known A∗ algorithm [21, 3]. This
algorithm relies on the exploration of the tree of solutions. In this tree, a node
corresponds to a partial edition of the input graph towards the target one. A leaf
of the tree corresponds to a complete edit path which transforms one graph into
the other. The exploration of the tree is led by developing the most promising
ways on the basis of an estimation of GED. For each node, this estimation is
the sum of the cost associated to the partial edit path and an estimation of the
cost for the remaining path. The latter is given by a heuristic. Provided that the
estimation of the future cost is lower than or equal to the real cost, an optimal
path from the root node to a leaf node is guaranteed to be found [7]. The different
A*-based methods published in the literature mainly differ in the implemented
heuristics for the future cost estimation which correspond to different tradeoffs
between approximation quality and their computation time [21, 3].

A second family of algorithms consists in using Binary Linear Programing
(BLP) for computing the GED. Justice and Hero [9] proposed a BLP formulation
of the GED problem. The proposed program searches for the permutation matrix
which minimizes the cost of transforming G1 into G2, with G1 and G2 two
unweighted and undirected attributed graphs. The criterion to be minimized
takes into account costs for matching vertices, but the formulation does not
integrate the ability to process graphs with labels on their edges.

In some previous works, we also have investigated the use of Integer Lin-
ear Programing for graph matching problems. In [11, 13], a formulation and a
toolbox are proposed for substitution-tolerant subgraph isomorphism and its use
for symbol spotting in technical drawings. In [12], a BLP-based minimum cost
subgraph matching is described. It has been used for document analysis pur-
pose in [6]. In this paper, we propose an extension of [12] for GED computation.
The proposed framework can be used to compute the distance between richly
attributed graphs (i.e. with attributes on both vertices and edges) which can
not be tackled using the BLP formulation proposed in [9]. Experiments led on
reference datasets show that the new BLP formulation can compute an exact
GED on larger graphs than A∗ based algorithm.

This paper is organized as follows: Section 2 presents the important defini-
tions necessary for introducing our formulations of the GED. Then, Section 3 de-
scribes the proposed binary linear programming formulation. Section 4 presents
the experiments and analyses the obtained results. Section 5 provides some con-
cluding remarks.



3

2 Definitions

In this paper, we are interested in computing GED between attributed graphs.
This section is dedicated to the introduction of the notations and definitions
used in the remaining of the paper.

Definition 1. An attributed graph G is a 4-tuple G = (V,E, µ, ξ), where :

– V is a set of vertices,

– E is a set of edges, such that ∀e = ij ∈ E, i ∈ V and j ∈ V ,

– µ : V → LV is a vertex labeling function which associates the label µ(v) to
all vertices v of V , where LV is the set of possible labels for the vertices,

– ξ : E → LE is an edge labeling function which associates the label ξ(e) to all
edges e of E, where LE is the set of possible labels for the edges.

The vertices (resp. edges) label space LV (resp. LE) may be composed of any
combination of numeric, symbolic or string attributes.

Definition 2. The graph edit distance d(., .) is a function

d : G × G → R+

(G1, G2) 7→ d(G1, G2) = min
o=(o1,...,ok)∈Γ (G1,G2)

k∑
i=1

c(oi)

where G1 = (V1, E1, µ1, ξ1) and G2 = (V2, E2, µ2, ξ2) are two graphs from the set
G and Γ (G1, G2) is the set of all edit paths o = (o1, . . . , ok) allowing to transform
G1 into G2. An elementary edit operation oi is one of vertex substitution (v1 →
v2), edge substitution (e1 → e2), vertex deletion (v1 → ε), edge deletion: (e1 →
ε), vertex insertion (ε→ v2) and edge insertion (ε→ e2) with v1 ∈ V1, v2 ∈ V2,
e1 ∈ E1 and e2 ∈ E2. ε is a dummy vertex or edge which is used to model
insertion or deletion. c(.) is a function which associates a cost to each elementary
edit operation oi.

In the more general case where GED is computed between attributed graphs,
edit costs are generally defined as functions of vertices (resp. edges) attributes.
More precisely, substitution costs are defined as a function of the attributes of the
substituted vertices (resp. edges), whereas insertion and deletion are penalized
with a value linked to the attributes of the inserted/deleted vertex (resp. edge):

c(v1 → v2) = c(v2 → v1) = fv(µ1(v1), µ2(v2))
c(e1 → e2) = c(e2 → e1) = fe(ξ1(e1), ξ2(e2))
c(v → ε) = c(ε→ v) = gv(µ(v))
c(e→ ε) = c(ε→ e) = ge(ξ(e))



4

3 BLP formulation of GED

Binary Linear Programing is a restriction of integer linear programming (ILP)
with binary variables. Its general form is :

min
x

cTx (1a)

subject to Ax ≤ b (1b)

x ∈ {0, 1}n (1c)

where c ∈ Rn, A ∈ Rn×m and b ∈ Rm are data of the problem. A feasible
solution is a vector x of n binary variables (1c) which respects linear inequality
constraints (1b). The constraint (1c) which enumerates the admissible values of
variables is called a domain constraint. If the program has at least a feasible
solution, then the optimal solutions are the ones that minimize the objective
function (1a) which is a linear combination of variables of x weighted by the
components of the vector c.

In this section, we successively define the variables, the objective function
and the linear constraint of the BLP used for formulating GED as a BLP.

3.1 BLP-GED variables

Our goal is to compute GED between two graphs G1 = (V1, E1, µ1, ξ1) and
G2 = (V2, E2, µ2, ξ2). In the rest of this section, for the sake of simplicity of
notations, we consider that the graphs G1 and G2 are simple directed graphs.
However, the formulations given in this section can be applied directly without
modification to multigraphs. Besides, the extension to the undirected case only
needs some slight modifications.

In the GED definition provided in Section 2, the edit operations that are
allowed to match the graphs G1 and G2 are (i) the substitution of a vertex
(respectively an edge) of G1 with a vertex (resp. an edge) of G2, (ii) the deletion
of a vertex (or an edge) from G1 and (iii) the insertion of a vertex (or an edge)
of G2 in G1. For each type of edit operation, we define a set of corresponding
binary variables:

– ∀(i, k) ∈ V1 × V2, xi,k =

{
1 if i is substituted with k,
0 otherwise.

– ∀(ij, kl) ∈ E1 × E2, yij,kl =

{
1 if ij is substituted with kl,
0 otherwise.

– ∀i ∈ V1, ui =

{
1 if i is deleted from G1

0 otherwise.

– ∀ij ∈ E1, eij =

{
1 if ij is deleted from G1

0 otherwise.

– ∀k ∈ V2, vk =

{
1 if k is inserted in G1

0 otherwise.

– ∀kl ∈ E2, fkl =

{
1 if kl is inserted in G1

0 otherwise.



5

Using these notations, we define an edit path between G1 and G2 as a 6-
tuple (x,y,u,v, e, f) where x = (xi,k)(i,k)∈V1×V2

, y = (yij,kl)(ij,kl)∈E1×E2
, u =

(ui)i∈V1 , e = (eij)ij∈E1 , v = (vk)k∈V2 and f = (fkl)kl∈E2 .
In order to evaluate the global cost of an edit path, elementary costs for each

edit operation must be defined. We adopt the following notations for these costs:

– ∀(i, k) ∈ V1 × V2, c(i→ k) is the cost of substituting the vertex i with k,
– ∀(ij, kl) ∈ E1×E2, c(ij → kl) is the cost of substituting the edge ij with kl,
– ∀i ∈ V1, c(i→ ε) is the cost of deleting the vertex i from G1,
– ∀ij ∈ E1, c(ij → ε) is the cost of deleting the edge ij from G1,
– ∀k ∈ V2, c(ε→ k) is the cost of inserting the vertex k in G1,
– ∀kl ∈ E2, c(ε→ kl) is the cost of inserting the edge kl in G1.

3.2 Objective function

The objective function is the overall cost induced by applying an edit path
(x,y,u,v, e, f) that transforms a graph G1 into G2, using the elementary costs
defined above. GED between G1 and G2 is the minimum value of the objective
function (2) over (x,y,u,v, e, f) subject to constraints detailed in Section 3.3.

d(G1, G2) = min
x,y,u,v,e,f

(∑
i∈V1

∑
k∈V2

c(i→ k) · xi,k +
∑
ij∈E1

∑
kl∈E2

c(ij → kl) · yij,kl

+
∑
i∈V1

c(i→ ε) · ui +
∑
k∈V2

c(ε→ k) · vk

+
∑
ij∈E1

c(ij → ε) · eij +
∑
kl∈E2

c(ε→ kl) · fkl

)
(2)

3.3 Constraints

The constraints presented in this part are designed to guarantee that the admis-
sible solutions of the BLP are edit paths that transform G1 in a graph which
is isomorphic to G2. An edit path is considered as admissible if and only if the
following conditions are respected:

1. It provides a one-to-one mapping between a subset of the vertices of G1 and
a subset of the vertices of G2. The remaining vertices are either deleted or
inserted,

2. It provides a one-to-one mapping between a subset of the edges of G1 and a
subset of the edges of G2. The remaining edges are either deleted or inserted,

3. The vertices matchings and the edges matchings are consistent, i.e. the graph
topology is respected.



6

The following paragraphs describe the linear constraints used to integrate
these conditions into the BLP.

1 - Vertices matching constraints The constraint (3) ensures that each
vertex of G1 is either matched to exactly one vertex of G2 or deleted from G1,
while the constraint (4) ensures that each vertex of G2 is either matched to
exactly one vertex of G1 or inserted in G1:

ui +
∑
k∈V2

xi,k = 1 ∀i ∈ V1 (3)

vk +
∑
i∈V1

xi,k = 1 ∀k ∈ V2 (4)

2 - Edges matching constraints Similar to the vertex matching constraints,
the constraints (5) and (6) guarantee a valid mapping between the edges:

eij +
∑
kl∈E2

yij,kl = 1 ∀ij ∈ E1 (5)

fkl +
∑
ij∈E1

yij,kl = 1 ∀kl ∈ E2 (6)

3 - Topological constraints In order to respect the graph topology in the
matching, an edge ij ∈ E1 can be matched to an edge kl ∈ E2 only if the head
vertices i ∈ V1 and k ∈ V2, on the one hand, and if the tail vertices j ∈ V1 and
l ∈ V2, on the other hand, are respectively matched. This quadratic constraint
can be expressed linearly with the following constraints (7) and (8):

– ij and kl can be matched if and only if their head vertices are matched:

yij,kl ≤ xi,k ∀(ij, kl) ∈ E1 × E2 (7)

– ij and kl can be matched if and only if their tail vertices are matched:

yij,kl ≤ xj,l ∀(ij, kl) ∈ E1 × E2 (8)

Equations 2 to 8, coupled with domain constraints which ensure that the
solution is binary leads to our BLP formulation :

(BLP-GED)

min
x,y,u,v,e,f

(∑
i∈V1

∑
k∈V2

c(i→ k) · xi,k

+
∑
ij∈E1

∑
kl∈E2

c(ij → kl) · yij,kl

+
∑
i∈V1

c(i→ ε) · ui +
∑
k∈V2

c(ε→ k) · vk

+
∑
ij∈E1

c(ij → ε) · eij +
∑
kl∈E2

c(ε→ kl) · fkl

)
(9a)



7

subject to ui +
∑
k∈V2

xi,k = 1 ∀i ∈ V1 (9b)

vk +
∑
i∈V1

xi,k = 1 ∀k ∈ V2 (9c)

eij +
∑
kl∈E2

yij,kl = 1 ∀ij ∈ E1 (9d)

fkl +
∑
ij∈E1

yij,kl = 1 ∀kl ∈ E2 (9e)

yij,kl ≤ xi,k ∀(ij, kl) ∈ E1 × E2 (9f)

yij,kl ≤ xj,l ∀(ij, kl) ∈ E1 × E2 (9g)

with xi,k ∈ {0, 1} ∀(i, k) ∈ V1 × V2 (9h)

yij,kl ∈ {0, 1} ∀(ij, kl) ∈ E1 × E2 (9i)

ui ∈ {0, 1} ∀i ∈ V1 (9j)

vk ∈ {0, 1} ∀k ∈ V2 (9k)

eij ∈ {0, 1} ∀ij ∈ E1 (9l)

fkl ∈ {0, 1} ∀kl ∈ E2 (9m)

4 Experiments

In this section, we present some experimental results obtained using the proposed
formulation, compared with those of two reference methods. The first one is
based on the A∗ algorithm with a bipartite heuristic [21]. This method is the
most well-known exact GED method and is often used to evaluate the accuracy
of approximate methods. The second exact method is the BLP proposed by
Justice and Hero in [9]. This method, called JH in the paper, is directly linked
to our proposal. Since this method cannot deal with edge attributes, we could
not perform JH on all our datasets.

In this practical work, our method has been implemented in C# using
CPLEX Concert Technology. All the methods were run on a 2.6 GHz quad-core
computer with 8 GB RAM. For the sake of comparison, none of the methods
were parallelized and CPLEX was set up in a deterministic manner.

The 3 methods are evaluated on 7 reference datasets:

– GREC [17] is composed of undirected graphs of rather small size (i.e. up to
20 vertices in our experiments). In addition, continuous attributes on vertices
and edges play an important role in the matching procedure. Such graphs
are representative of pattern recognition problems where graphs are involved
in a classification stage.

– PROTEIN [17] is a molecule dataset. In similar datasets, vertices are la-
beled with atomic chemical elements, which imposes a stringent constraint
of label equality in the matching process. In this particular dataset, vertices
are labeled with chemical element sequences. The stringent constraint can



8

be relaxed thanks to the string edit distance. So the matching process can
be tolerant and accommodate with differences on labels.

– ILPISO [8] stands apart from the others in the sense that this dataset hold
directed graphs. The aim is to illustrate the flexibility of our proposal that
can handle different types of graphs.

– LETTER [17] is broken down into three parts (LOW, MED, HIGH) which
corresponds to distortion levels. The LETTER dataset is useful because
it holds graphs of rather small size (maximum of 9 vertices), what makes
feasible the computations of all GED methods.

– PAH 3 is a purely structural database with no labels at all. PAH is a hard
dataset gathering graphs of rather large size (≥ 20 vertices). Graphs are
complex and hard to match in cases where neighborhoods and attributes do
not allow easily to differentiate between vertices.

All these datasets are publicly available on IAPR TC15 website4. In order
to evaluate the algorithms behaviours when the size of the problem grows, we
have built subsets where all graphs have the same number of vertices for GREC,
PROTEIN, ILPISO datasets. Concerning edit costs, we borrow the setting from
[19] for GREC, PROT, and LETTER databases.

In order to evaluate an exact GED computation method, the natural criterion
is the computation time. However, from a practical point of view, exact GED
solving can be infeasible in a reasonable time or can overstep memory capacity.
In our framework, if a time limit of 300 seconds is reached, the instance is
considered as unsolved. The same situation arises when the memory limit of 1
Gb is reached.

Obtained results when comparing the 3 methods are presented in Table 1.
Two values are given to qualify each method on each dataset: the percentage of
instances solved to optimality (without time or memory problems), called ”Opt”
and the average running time in milliseconds called ”Time”. In the objective of a
fair comparison, the average running time is calculated only from instances solved
to optimality by all the methods. If the memory limit is reached, ”OM” appears
in the table. The ”NA” values mean that the algorithm can not be applied to
the dataset. It occurs for the JH method on GREC, PROT and ILPISO dataset
since JH formulation does not take into account edge labels.

Some observations can be made from these results. First, as expected, A* is
the worst method. It reaches the optimal solution only for datasets composed
of very small graphs (LETTER and GREC10). A* is the fastest method for
small graphs. When graphs are larger than 10 vertices, all the instances are not
optimally solved. When graphs hold 10 vertices, the execution time increase con-
siderably by a factor 2000 compared to graphs of 5 vertices. The combinatorial
explosion is not prevented by the pruning strategy. Beyond 10 vertices, A* can-
not converge to the optimality because of memory saturation phenomenon. The
size of the list OPEN containing pending solutions grows exponentially accord-

3 https://brunl01.users.greyc.fr/CHEMISTRY/
4 https://iapr-tc15.greyc.fr/links.html



9

Table 1. Results

BLP-GED A* JH

Opt Time Opt Time Opt Time

LETTER HIGH 100 43 100 3 100 13

LETTER MED 100 8 100 1 100 10

LETTER LOW 100 8 100 1 100 10

GREC 5 100 4 100 3 NA NA

GREC 10 100 60 90.1 7980 NA NA

GREC 20 99.5 11016 OM OM NA NA

PROT 20 83.1 35376 OM OM NA NA

PROT 30 37.9 81689 OM OM NA NA

ILPISO 10 100 23 OM OM NA NA

ILPISO 25 91.6 6545 OM OM NA NA

ILPISO 50 56.9 17045 OM OM NA NA

PAH 51 92991 OM OM 100 948

ing to the graph size and the bipartite heuristic fails to prune the search tree
efficiently.

Second, when analysing BLP-GED results, one can see that for datasets
composed of smaller graphs (LETTER, ILPISO10, GREC5-10), BLP-GED con-
verges to the optimality. For larger graphs (GREC20, PROT and ILPISO25-50),
the optimal solution is not always reached, because of the time restriction but
BLP-GED is the only method to solve instances and to output solutions. An in-
teresting comment comes from the GREC dataset where nearly all instances are
solved to optimality however increasing the graph size of only 5 vertices can lead
to an important increase of time. The relation between graph size and solving
time is not linear at all and it recalls us humbly how hard is the GED problem.

Finally, concerning JH, the method performs well for the PAH dataset solving
100 % of instances optimally against 51 % for BLP-GED. JH achieved better
results because it is not generic but dedicated to compare unweighted graphs.
However, on a smaller graphs like in LETTER, JH is the slowest method due
to a higher number of variables and constraints than BLP-GED formulation.
Finally, JH is not flexible and the method is unable to consider edge labels and
cannot be applied to GREC, PROT and ILPISO.

5 Conclusion

In this paper, an exact binary linear programming formulation of the GED
problem has been presented. One of the major advantage of our proposal against
another binary program (JH) is that it can deal with a wide range of attributed
relational graphs: directed or undirected graphs, simple graphs or multigraphs,
with a combination of symbolic, numeric and/or string attributes on vertices



10

and edges. Moreover, obtained results show that our BLP is about 100 times
faster than A∗ for medium-size graphs while being more memory efficient. Our
future works concern the optimization and the approximation of our formulation
of GED computation.

References

1. Fankhauser, S., Riesen, K., Bunke, H., Dickinson, P.J.: Suboptimal graph isomor-
phism using bipartite matching. IJPRAI 26(6) (2012)

2. Fischer, A., Bunke, H.: Character prototype selection for handwriting recognition
in historical documents. In: Signal Processing Conference, 2011 19th European.
pp. 1435–1439 (Aug 2011)

3. Fischer, A., Plamondon, R., Savaria, Y., Riesen, K., Bunke, H.: A hausdorff heuris-
tic for efficient computation of graph edit distance. In: Fränti, P., Brown, G., Loog,
M., Escolano, F., Pelillo, M. (eds.) Joint IAPR Int. Workshop, S+SSPR 2014 Pro-
ceedings. Lecture Notes in Computer Science, vol. 8621, pp. 83–92. Springer (2014),
http://dx.doi.org/10.1007/978-3-662-44415-3

4. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of
graph edit distance based on hausdorff matching. Pattern Recogn. 48(2), 331 –
343 (2015)

5. Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoin-
formatics. Pattern Recognition Letters 33(15), 2038 – 2047 (2012),
http://www.sciencedirect.com/science/article/pii/S016786551200102X, graph-
Based Representations in Pattern Recognition

6. Hammami, M., Héroux, P., Adam, S., d’Andecy, V.P.: One-shot field spotting on
colored forms using subgraph isomorphism. In: Document Analysis and Recogni-
tion (ICDAR), 2015 13th International Conference on. pp. 586–590 (Aug 2015)

7. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. Systems Science and Cybernetics, IEEE Trans. on 4(2),
100–107 (1968)

8. Héroux, P., Le Bodic, P., Adam, S.: Graphics Recognition. Current Trends and
Challenges: 10th Int. Workshop, GREC 2013, Revised Selected Papers, chap.
Datasets for the Evaluation of Substitution-Tolerant Subgraph Isomorphism, pp.
240–251 (2014)

9. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (Aug 2006)

10. Kostakis, O.: Classy: fast clustering streams of call-graphs. Data Mining and
Knowledge Discovery 28(5), 1554–1585 (2014), http://dx.doi.org/10.1007/s10618-
014-0367-9

11. Le Bodic, P., Héroux, P., Adam, S., Lecourtier, Y.: An integer linear program
for substitution-tolerant subgraph isomorphism and its use for symbol spotting in
technical drawings. Pattern Recognition 45(12), 4214 – 4224 (2012)

12. Lerouge, J., Hammami, M., Héroux, P., Adam, S.: Minimum cost subgraph match-
ing using a binary linear program. Pattern Recognition Letters 71, 45 – 51 (2016)

13. Lerouge, J., Le Bodic, P., Héroux, P., Adam, S.: GEM++: A Tool for Solving
Substitution-Tolerant Subgraph Isomorphism, pp. 128–137. Springer International
Publishing, Cham (2015)

14. Myers, R., Wilson, R.C., Hancock, E.R.: Bayesian graph edit distance. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22(6), 628–635 (2000)



11

15. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computa-
tion of graph edit distance. In: SSPR/SPR. pp. 163–172 (2006)

16. Raveaux, R., Burie, J.C., Ogier, J.M.: A graph matching method and a graph
matching distance based on subgraph assignments. Pattern Recogn. Lett. 31(5),
394–406 (2010)

17. Riesen, K., Bunke, H.: Iam graph database repository for graph based pattern
recognition and machine learning. In: Structural, Syntactic, and Statistical Pattern
Recognition, Lecture Notes in Computer Science, vol. 5342, pp. 287–297 (2008)

18. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)

19. Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space
Embedding. World Scientific Publishing Co., Inc., River Edge, NJ, USA (2010)

20. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using
various search strategies. Pattern Recognition 48(4), 1349–1363 (2015)

21. Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit distance compu-
tation with a bipartite heuristic. In: Frasconi, P., Kersting, K., Tsuda, K. (eds.)
Mining and Learning with Graphs, MLG 2007, Firence, Italy, August 1-3, 2007,
Proceedings (2007)

22. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: On ap-
proximating graph edit distance. In: Proceedings of the VLDB Endowment. vol. 2,
pp. 25–36 (2009)


