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Abstract. Graph edit distance (GED) is an error tolerant graph match-
ing paradigm whose methods are often evaluated in a classification con-
text and less deeply assessed in terms of the accuracy of the found so-
lution. To evaluate the accuracy of GED methods, low level information
is required not only at the classification level but also at the matching
level. Most of the publicly available repositories with associated ground
truths are dedicated to evaluating graph classification or exact graph
matching methods and so the matching correspondences as well as the
distance between each pair of graphs are not directly evaluated. This
paper consists of two parts. First, we provide a graph database reposi-
tory annotated with low level information like graph edit distances and
their matching correspondences. Second, we propose a set of performance
evaluation metrics to assess the performance of GED methods.

Keywords: Graph Edit Distance, Performance Evaluation Metrics, Match-
ing Correspondence.

1 Introduction

Attributed relational graphs are powerful representation structures that have
been widely used to represent structural description of objects in pattern recog-
nition (PR), computer vision and other related fields. When objects are rep-
resented by graphs, the problem of object comparison is turned into a graph
matching (GM) one where an evaluation of structural and attributed similarity
of two graphs has to be found [1]. The similarity evaluation, based on GM, con-
sists in finding correspondences between vertices and edges of two graphs that
satisfy some constraints ensuring that similar substructures in one graph are
mapped to similar substructures in the other [2].

Among error-tolerant GM problems, GED is of great interests. GED is a
graph matching paradigm whose concept was first reported in [3, 4]. Its basic
idea is to find the best set of edit sequences that can transform graph g1 into
graph g2 by means of edit operations on graph g1. The allowed operations are
inserting, deleting and/or substituting vertices and their corresponding edges.
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In the literature, many exact and approximate approaches have been pro-
posed to solve GED [5–8]. As a first step to evaluate such approaches, one needs
to find repositories dedicated to evaluating GM in general or GED in particular.

Lots of graphs repositories have been made publicly available for the com-
munity [9, 10]. However, to the best of our knowledge, most of these repositories
have been put forward for classification and clustering experiments. Moreover,
only high level information has been given to the community such as the class
labels of the objects represented by graphs. When evaluating classification, the
matching quality is evaluated indirectly through a recognition rate which highly
depends on the classifier and does not allow a clear analysis of the matching
algorithms. On the other hand, low level information has not been provided. For
instance, the matching between vertices and edges of each pair of graphs.

We, authors, believe that providing low level information is of great interest
for understanding the behavior of GED methods in terms of accuracy and speed
as a function of graph size and attribute types. Hence, instead of proposing
yet a completely new graph database repository, we propose adding low level
information for well-known and publicly used databases. For that purpose, the
GREC, Mutagenicity, Protein, and CMU databases were selected [9, 11]. Added
information consists of the best found distance for each pair of graphs as well
as their vertex to vertex and edge to edge matching. This information helps at
assessing the feasibility of exact and approximate methods.

Our repository aims at making a first step towards a GM repository that
is able to assess the accuracy of error-tolerant GM methods. All the graph
databases and their added information are publicly available1. Moreover, we
propose novel performance evaluation metrics that aim at comparing a set of
GED approaches based on several significant criteria. For instance, deviation
and solution optimality. All the provided criteria are assessed under time and
memory constraints.

The remainder of this paper is organized as follows: In Section 2, a focus on
the related works is given. In Section 3, the graph set repository is described. In
Section 4, the different performance evaluation metrics are put forward to eval-
uate GED approaches. Section 5 demonstrates a use case of these performance
evaluation metrics. Finally, Section 6 is devoted to conclusions and perspectives.

2 Related Works

Table 1 synthesizes the graph databases presented in the literature. One may
notice that exact GM has been evaluated at the matching level. However, error-
tolerant GM has been evaluated at the classification level rather than the match-
ing one. [11] is devoted to error-tolerant GM with ground truth information.
However, graphs have the same number of vertices and thus the scalability mea-
sure cannot be assessed. Indeed, there is a lack of performance comparison mea-
sures for error-tolerant GM methods, whether exact or approximate ones. More-
over, none of the graph repositories was dedicated to assessing the performance

1 http://www.rfai.li.univ-tours.fr/PagesPerso/zabuaisheh/GED-benchmark.html
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of GED methods. In this paper, we focus on GED methods since GED is a flexi-
ble paradigm that has been used in different applications in PR. To understand
better the behavior of each GED method, we provide new performance metrics.

Ref Problem Type Graph Type Database
Type

Measure Type Purpose

[12] Exact GM Non-attributed Synthetic Accuracy and scalability Matching

[11] Error-tolerant GM Attributed Real-world Memory consumption, accu-
racy and matching quality

Matching

[9] Error-tolerant GM Attributed Real-world Accuracy and running time Classification

[13, 14] Exact GM Attributed Synthetic Accuracy and scalability Matching

[15] Exact GM (Non)attributed Real-world Scalability Matching

Table 1. Synthesis of graph databases.

3 Graph Set Repository

This section is devoted to the description and the justification of the selected
graph databases as well as the details of the information added to each database.

3.1 Databases

Several databases are integrated in our repository. This section is devoted to the
advantages of each of these databases as well as graphs selection.

We aim at evaluating GED approaches when increasing the number of ver-
tices. To this end, we decomposed each database into disjoint subsets, each of
which contains graphs that have the same number of vertices. Moreover, we aim
at studying the behavior of each algorithm on different types of attributes.

For each database, two non-negative meta parameters associated to GED
are included (τnode and τedge) where τnode denotes a vertex deletion or insertion
whereas τedge denotes an edge deletion or insertion. A third meta parameter α
is integrated to control whether the edit operation cost on the vertices or on
the edges is more important. From each graph matching pair, we derive two
notions: a distance between each pair of graphs and vertex-vertex and edge-edge
matching or so-called edit sequence.

GREC Database: This database consists of a subset of the symbol database
underlying the GREC 2005 competition [16].

Database Interest: GREC is composed of undirected graphs of rather small size
(i.e., up to 24). In addition, continuous attributes on vertices and edges play
an important role in the matching process. Such graphs are representative of
pattern recognition problems where graphs are involved in a classification stage.
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Cost Function: Additionally to (x, y) coordinates, the vertices of graphs from
the GREC database are labeled with a type (ending point, corner, intersection,
circle). For edges, two types (line, arc) are employed. The cost functions of vertex
and edge substitutions, deletions and insertions are defined as follows:

– c(u→ ε) = c(ε→ v) = α.τnode

– c(u→ v) =

{
α.|µ(u)− µ(v)|, if labels are similar

α.2.τnode, otherwise
– c(p→ q) = 2.(1− α).Dirac(µ(p), µ(q))
– c(p→ ε) = c(ε→ q) = (1− α).τedge

where u ∈ V1, v ∈ V2, p ∈ E1 and q ∈ E2. V∗ and E∗ refer to the sets of vertices
and edges of graph g∗, respectively. µ is a function which returns the attribute(s)
of each vertex/edge. (∗ → ε) and (ε → ∗) denote vertex/edge deletion and
insertion, respectively. In our experiments, we have set τnode, τedge and α to 90,
15 and 0.5 respectively. The meta parameters’ values of the GREC, Mutagenicity
and Protein databases are taken from the PhD thesis of Riesen [17].

Database Decomposition: We filtered and decomposed the database into the
following subsets: (GREC-5, GREC-10, GREC-15 and GREC-20), each subset
has 10 graphs of size 5, 10, 15 and 20, respectively in addition to GREC-mix
that has graphs of different sizes taken from the aforementioned subsets. Graphs
were chosen from the train set and from different classes to capture, at best,
graph variability. 100 pairwise comparisons per subset are conducted.

Mutagenicity Database: The Mutagenicity database was originally prepared
by the authors of [18]. For simplicity, we denote this database as MUTA.

Database Interest: MUTA is representative of GM problems where graphs have
only symbolic attributed. MUTA gathers large graphs up to 70 vertices.

Cost Function: The cost functions of operations on vertices and edges are defined
as follows:

– c(u→ ε) = c(ε→ v) = 2.α.τnode

– c(u→ v) =

{
0, if they have the same symbols

α.2.τnode, otherwise
– c(p→ ε) = c(ε→ q) = (1− α).τedge − c(p→ q) = 0

where (τnode, τedge,α) values of Mutagenicity are set to (11,1.1,0.25).

Database Decomposition: (MUTA-10, MUTA-20, MUTA-30 . . . MUTA-70) were
selected and shrunk to 10 graphs per subset. In some subsets of MUTA, the
number of train graphs was less than 10. Hence, to complete the subsets, we
took some graphs from the test or the validation subsets. We also added another
subset, denoted by MUTA-mix, that contains 10 graphs of various number of
vertices. As in GREC, 100 comparisons are carried out in each subset.

Protein Database: The protein database was first reported in [18].
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Database Interest: This database contains numeric attributes on each vertex as
well as a string sequence that is used to represent the amino acid sequence.

Cost Function: The cost functions of matching operations are defined as follows:

– c(u→ ε) = c(ε→ v) = α.τnode

– c(u→ v) =

{
SED(µ(u), µ(v)), if labels are similar

α.τnode, otherwise

– c(p→ ε) = c(ε→ q) = (1− α).τedge

– c(p→ q) =

{
0, if labels are similar

α.τedge, otherwise

where (τnode,τedge,α) are set to (11,1,0.75) and SED is string edit distance
[19]. Given two amino acid sequences (s1 and s2), the corresponding cost of
matching symbols in s1 and s2 is defined as follows:

c(k → m) = c(k → ε) = c( ε → m) = 1, c(k → m) = 0, s.t. k,m ∈ s1, s2.

Database Decomposition: 10 graphs were selected from Protein-20, Protein-30
and Protein-40. In addition, 10 graphs were picked up from the aforementioned
Protein subsets and were put in the mixed database referred to as Protein-mix.
100 pairwise matchings per subset are conducted and integrated in the repository.

CMU Database: The CMU model house sequence is made up of a series of
images of a toy house that has been captured from different viewpoints. 111
images in total are publicly available. 660 comparisons are carried out.

Database Interest: Unlike the aforementioned databases, the CMU database has
a model house sequence that consists of a series of images. Each of which has
been manually annotated by a human being providing its key points (corner
features). Moreover, the ground truth is attached with each pair of graphs.

Cost Function: We empirically set (τnode,α) to (∞,0.5). The cost functions of
matching vertices and edges are similar to [20]. We formalize them as follows:

– c(u→ ε) = c(ε→ v) = α.τnode − c(u→ v) = 0
– c(p→ ε) = c(ε→ q) = (1− α).µ(q) − c(p→ q) = (1− α).|µ(p)− µ(q)|

Graphs Construction: A manual identification of corner features, or points, was
done to represent vertices on each of the rotated images. Then, the Delaunay
triangulation was applied on the corner-features in order to identify edges and
finally transform the images into graphs. Vertices are labeled with (x,y) coordi-
nates while edges are labeled with the distance between vertices. Each graph has
30 vertices and matched with graphs at 10, 20, 30, 40, 50, 60, 70, 80, and 90 in
the rotation sequence. Since vertex to vertex matchings are given, the accuracy
of the final matching sequence of any method p can be computed by verifying
whether or not the matched vertices are correct.
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3.2 Added Low Level Information

For each graphs pair (gi, gj), the initial content of the databases in addition to the
following low level information are provided: the optimal or sub-optimal solution
provided by the most accurate GED method for d(gi, gj), the name of the most
accurate GED method, the solution status (i.e., optimal or sub-optimal) and
the edit path sequence. Table 2 illustrates an example of two graphs taken from
GREC-5 and their added information in our repository. All these information
are available as csv files in our website.

G1Name G2Name Method Distance Optimal Matching

image3 23 image3 25 BS−100 135.178 false

Vertex:0→ 0=37.476/ Vertex:1→ 1=6.519/ Vertex:2→ 2=

32.070/ Vertex:4→ 4=34.409/ Vertex:3→ 3=24.703/

Edge:2↔ 3→ 2↔ 3 =0.0/ Edge:0↔ 4→ 0↔ 4=0.0

Table 2. Low level information (taken from the file GREC5-lowlevelinfo.csv).

4 Performance Evaluation Metrics

In this section, we define the new metrics used for evaluating any GED method.
We propose to analyze the behavior of the different methods under a time con-
straint (CT ) as well as a memory constraint (CM ):

Deviation: We compute the error committed by each method p over the refer-
ence distances. For each pair of graphs matched by method p, we provide the
following deviation measure:

dev(gi, gj)
p =
|d(gi, gj)

p −Rgi,gj |
Rgi,gj

, ∀(i, j) ∈ J1,mK2,∀p ∈ P (1)

where m is the number of graphs. d(gi, gj)
p is the distance obtained when

matching gi and gj using method p while Rgi,gj corresponds to the ground truth
provided in our csv files. Rgi,gj represents the best distance among all methods
p for matching graphs gi and gj . As all comparisons are evaluated under a small
or a big CT , Rgi,gj does not necessarily have to be the optimal distance. In other
words, Rgi,gj represents the best solution found under a small or a big CT . This
solution could be optimal when CT is reasonable to solve the given matching
problem. For each method p, the mean dev(gi, gj)

p is computed.

Matching Dissimilarity: Let EP refer to vertex to vertex mappings between
g1 into g2. We aim at finding how dissimilar are two EP s (i.e., EPp and EPq)
that correspond to matching gi and gj using methods p and q. Thus, the idea here
is to see how far an EP from the ground truth EP integrated in our repository.
To this objective, we count the differences between the two solutions, we exclude
edge correspondences in order to only concentrate on vertex correspondences.
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Mathematically saying, the distance between EP p and EP q is defined as:

d(EP p, EP q) =

n∑
i=1

m∑
j=1

δ(EP p(i), EP q(j)) (2)

where n = |EP p|, m = |EP q| and δ(EP p(i), EP q(j)) is the well-known
Kronecker Delta function:

δ(EP p(i), EP q(j)) =

{
0, if EP p(i) = EP q(j)

1, if EP p(i) 6= EP q(j)
(3)

Number of Explored Nodes: We propose to measure the number of explored
nodes in the tree search for each comparison d(gi, gj). This number represents
the number of moves in the search tree needed to obtain the best found solution.
The mean number of explored nodes in the tree search is calculated as follows:

#explored nodesp =
1

m×m

m∑
i=1

m∑
j=1

expnd(d(gi, gj)
p) (4)

where m×m is the total number of comparisons per subset, m is the number
of graphs to be matched and expnd(d(gi, gj)

p) is the number of explored nodes
obtained when matching graphs gi and gj of subset s using method p. Note that
p has to be a tree-search based algorithm (e.g., A∗ [5] and BeamSearch [21]).

Number of Best Found Solutions: For each subset, we count the number of
times the best solution is found by method p. This number indicates that method
p was able to find the best solution, not necessarily the optimal one. The so-
lution is supposed to be the best one when compared to all the involved methods.

Number of Unfeasible Solutions: For each method p, we measure the number
of times method m was not able to find an EP. This case can happen when CT

or CM is violated before finding a complete solution. (i.e., when there is only
incomplete matching correspondences). Lower bound methods [8] always give
unfeasible solutions as they only output distances without matching sequences.

Number of Time-Out and Out-Of-Memory Cases: For each subset, we
count the number of times method p violates CT and CM respectively.

Running Time: We measure the overall time in milliseconds (ms), for each
GED computation, including all the inherits costs computations. The mean run-
ning time is calculated per subset s and for each method p.

Time-Deviation Scores: To sum up advantages and drawbacks of each method
p, a projection of p on a two-dimensional space (R2) is achieved by using speed-
score and deviation-score features defined in equations 7 and 8 where speed and
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deviation are two concurrent criteria to be minimized. First, for each database,
the mean deviation and the mean time is derived as follows:

devp =
1

m×m

m∑
i=1

m∑
j=1

dev(gi, gj)
p (5)

timep =
1

m×m

m∑
i=1

m∑
j=1

time(gi, gj)
p and (i, j) ∈ J1,mK2 (6)

where dev(gi, gj) is the deviation of each d(gi, gj) and time(gi, gj) is the
running time of each d(gi, gj). To obtain comparable results between databases,
mean deviations and times are normalized between 0 and 1 as follows:

deviation scorep =
1

#subsets

#subsets∑
i=1

devpi
max devi

(7)

speed scorep =
1

#subsets

#subsets∑
i=1

timepi
max timei

(8)

where max devi = max(devpi ) and max timei = max(timepi ) ∀p ∈ P

5 Use Case

In this section, we demonstrate a use case of the aforementioned metrics. Two
GED methods were evaluated. On the exact method side, the A∗ algorithm
applied to GED problem is a foundation work [5]. It is the most well-known exact
method that is often used to evaluate the accuracy of approximate methods. On
the approximate method side, the truncated version of A∗, i.e., Beam Search
(BS-x ), was chosen. This method is one of the most accurate heuristics of the
literature. In this use case, x in BS-x has been set to 1 and 100, respectively.

In this paper, we only provide results on the aforementioned methods. The
results on the other databases and other methods are demonstrated in our web-
site. Also, due to the large number of matchings considered and the exponential
complexity of the tested methods, CT has been set to 300 seconds which is large
enough to let the methods search deeply into the solution space and to ensure
that many search tree nodes will be explored. CM has been set to 1Gb.

Figure 1(a) represents the deviation from the best distances integrated in
our repository. Figure 1(b) points out the matching dissimilarity when compar-
ing d(gi, gj)

p with the best matching in our repository. Both figures reveal that
BS-100 had the least deviation. Similarly, Figure 1(c) shows that BS-100 had
the highest number of best found solutions. In average, BS-100 beat the other
methods with 38 more best solutions. A* suffered from high memory consump-
tion, see Figure 1(g) and thus it outputted unfeasible solutions, as demonstrated
in Figure 1(d). In average, on MUTA-40, MUTA-50, MUTA-60 and MUTA-70,
BS-100 explored around 4043 search nodes more than the other methods. Figure
1(h) shows that, in average, BS-1 was the fastest algorithm. However, according
to Figure 1(i), BS-100 gave the best trade-off between deviation and speed.
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Fig. 1. Results on MUTA and under a reasonable time constraint (CT = 300 seconds).

6 Conclusions

The contribution of this paper is two-fold: First, additional low level annotation
has been made publicly available for some representative graph databases. Each
graph comparison is coupled with the best solution found by a GED method.
Four databases with different characteristics are integrated (GREC, MUTA, Pro-
tein and CMU). We have proposed to evaluate the scalability of GED methods
on GREC, MUTA and Protein as they have graphs of different number of ver-
tices. Thus, these databases were decomposed into subsets, each of which has
graphs whose number of vertices are equal. On the other hand, CMU has ge-
ometric graphs of 30 vertices, each of which has been subjected to rotations.
Second, this paper has presented performance evaluation metrics that assess
GED methods under time and memory constraints. The aim of this paper is to
make GED methods better comparable against each other. For that reason, we
highly encourage the community not only to use the information provided in the
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repository, but also to integrate their algorithms’ answers when obtaining more
accurate results.

In future work, we will further expand this repository by integrating other
publicly available databases.
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