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Résumé

En raison de la capacité et de l’amélioration des performances informatiques, les représentations
structurelles sont devenues de plus en plus populaires dans le domaine de la reconnais-
sance de formes (RF). Quand les objets sont structurés à base de graphes, le problme de la
comparaison d’objets revient à un problme d’appariement de graphes (Graph Matching).

Au cours de la dernière décennie, les chercheurs travaillant dans le domaine de l’appariement
de graphes ont porté une attention particulière à la distance d’édition entre graphes (GED),
notamment pour sa capacité à traiter différent types de graphes. GED a été ainsi appliquée
sur des problématiques spécifiques qui varient de la reconnaissance de molécules à la clas-
sification d’images.

Les chercheurs se sont focalisés sur les méthodes approchées qui peuvent trouver des
solutions sous-optimales, mais souvent sans aucune garantie de précision. Pour cette
raison, dans cette thèse, nous nous focalisons sur les algorithmes exacts. La complexité du
problème d’appariement de graphes étant NP-difficile, les méthodes exactes proposées ne
peuvent être utilisées que sur des petites instances de graphes. Afin de réduire le temps
de calcul, deux possibilités sont envisagées : élaguer l’espace de recherche et distribuer les
calculs.

Dans cette thèse, nous avons dans un premier temps, proposé un algorithme de recherche
arborescente travaillant en profondeur d’abord (Depth-First GED) et nécessitant moins de
mémoire et de temps de calcul pour produire une solution. Une évaluation de toutes les so-
lutions possibles est effectuée sans les énumérer explicitement. Les candidats sont éliminés
à l’aide des bornes inférieure et supérieure. Pour trouver un compromis entre la vitesse et
l’optimalité, nous avons proposé une version améliorée de Depth-First GED (appelée Any-
time) qui est capable de délivrer une première solution réalisable très rapidement. Ensuite,
en laissant plus de temps, l’algorithme améliore progressivement sa solution initiale dans
le but de proposer de meilleures solutions jusqu’à converger vers une solution optimale.

Pour illustrer l’utilisation des méthodes Anytime, nous convertissons notre Depth-First
GED en Anytime Depth-First GED. Les propriétés de ces méthodes sont analysées afin de
les adapter aux problmes d’appariement de graphes, ceci en tenant en compte des résultats
en terme de précision de la solution fournie par rapport à la valeur optimale ou la meilleure
solution trouvée par une méthode de l’état de l’art.

Cette thése propose également des solutions initiales pour réduire le temps d’exécution
des méthodes de GED exactes à l’aide de techniques de parallélisation et de distribution
des calculs. Une approche paralléle et une autre distribuée sont présentées. Ces deux
méthodes sont aussi basées sur la méthode Depth-First GED oú l’espace de recherche est
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RÉSUMÉ

décomposé en arbres de recherche qui sont résolus indépendamment en paralléle ou d’une
maniére répartie.

Afin d’analyser les performances des méthodes proposées, nous avons non seulement
évalué les méthodes GED dans un contexte de classification mais aussi à un niveau plus
détaillé en mesurant la qualité de l’appariement. Les méthodes proposées sont comparées
avec cinq méthodes de l’état de l’art. Mais en raison de la complexité exponentielle
des algorithmes GED, la comparaison est effectuée sous contraintes de restrictions de
temps de calcul et d’espace mémoire. De plus, une base de graphes (GDR4GED) avec
une vérité terrain dédiée à l’évaluation des méthodes de GED est proposée. Dans cette
vérité terrain, nous ajoutons des informations concernant les appariements entre paires
de graphes à des bases de données publiques précédemment utilisées dans la littérature.
L’ajout d’informations se compose de la meilleure distance d’édition trouvée ainsi que
l’appariement ”sommet à sommet” et ”arc à arc” de chaque paire de graphes. Cette
information permet d’évaluer la précision des méthodes de GED exactes et approchées.

De part ces expérimentations proposées, cette thèse remet en cause les réticences à
l’utilisation des méthodes exactes d’appariement de grands graphes dans la pratique, ou
même dans un contexte de classification. De fait, nous montrons que les méthodes ”Any-
time”, peuvent être efficaces, aussi bien dans un objectif de comparaison que de mise en
correspondence de graphes.

Mots-clés: Reconnaissance de formes, appariement de graphes, distance d’édition,
Branch-and-Bound, systèmes parallèle et distribué, équilibrage de charge, évaluation de
performance, contraintes de temps.
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Abstract

Due to the inherent genericity of graph-based representations, and thanks to the im-
provement of computer capacities, structural representations have become more and more
popular in the field of Pattern Recognition (PR). In a graph-based representation, vertices
and their attributes describe objects (or part of them) while edges represent interrelation-
ships between the objects. Representing objects by graphs turns the problem of object
comparison into graph matching (GM) where correspondences between vertices and edges
of two graphs have to be found.

In the domain of GM, over the last decade, Graph Edit Distance (GED) has been
given a specific attention due to its flexibility to match many types of graphs. GED has
been applied to a wide range of specific applications from molecule recognition to image
classification. Researchers have shed light on the approximate methods that can find
suboptimal solutions hopefully close to the optimal ones but the gap between optimal and
suboptimal solutions has not been deeply studied yet. For that reason, in this thesis, we
focus on exact GED algorithms. Unfortunately, exact GED methods have an exponential
complexity. Thus, coming up with an exact GED algorithm that can be scaled up to
match graphs involved in PR tasks is a great challenge. Two promising ways to cut-off
computational time are search space pruning and distributed algorithms. To this end, we
first propose a depth-first GED algorithm which requires less memory and search time.
An evaluation of all possible solutions is performed without explicitly enumerating all of
them. Candidates are discarded using an upper and lower bounds strategy.

To find a trade-off between speed and optimality, we describe how to convert the
proposed depth-first GED method into an anytime one that is capable of delivering a first
solution very quickly. It also can find a list of improved solutions and eventually converges
to the optimal solution instead of providing one and only one solution (i.e., the optimal
solution). With the delight of more time, anytime methods can also reach the optimal
solution. To illustrate the usage of anytime GM algorithms, we convert our depth-first
GED algorithm into an anytime one. We analyze the properties of such methods to solve
GM problems and consider the performance in terms of accuracy of the provided solution
compared to the optimal or the best one found by a state-of-the-art methods.

This thesis is also considered as a first attempt to reduce the run time of exact GED
methods using parallel and distributed fashions. Two parallel and distributed GED ap-
proaches are put forward; both of them are based on the depth-first GED method. The
search space is decomposed into smaller search trees which are solved independently in a
parallel or a distributed manner.
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RÉSUMÉ

To benchmark the proposed GED methods, we propose not only assessing GED meth-
ods in a classification context but also evaluating them in a graph-level one (i.e., evaluating
their distance and matching accuracy). Due to the exponential complexity of exact GED
algorithms and in order to obtain this kind of information about methods, we propose an-
alyzing the behavior of the eight compared methods under time and memory constraints.
In addition to the performance evaluations metrics, we propose a graph database reposi-
tory dedicated to GED. In this repository, we add graph-level information to well-known
and publicly used databases. Added information consists of the best found edit distance
of each pair of graphs as well as their vertex-to-vertex and edge-to-edge mappings corre-
sponding to the best found distance. This information helps in assessing the feasibility of
exact and approximate GED methods.

This thesis brings into question the usual evidences that claim that it is impossible
to use exact error-tolerant GM methods in real-world applications when matching large
graphs, or even in a classification context. However, we argue and show that a new type
of GM, referred to as anytime methods, can be successful in a graph-level context as well
as a classification one.

Keywords: Pattern Recognition, Graph Matching, Graph Edit Distance, Branch-
and-Bound, Distributed and Parallel Systems, Load Balancing, Performance Evaluation
Metrics, Anytime Graph Matching, Time Constraints.
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Chapter 1

Introduction

The comparison between two objects is a crucial operation in Pattern Recognition
(PR). Lots of algorithmic tools exist for statistical pattern recognition. Such a fact proves
the mathematical efficiency of this approach. However, there are two drawbacks behind
choosing such an approach:

• Representing patterns of the same application by vectors limits the length of vectors.
That is, all these vectors have the same length even if they differ in their sizes and
complexities.

• Vectors do not represent the relationship between each part of a pattern and the
other. Such a fact limits their applicability on patterns that are rather simple.

Based on the aforementioned raised points, the use of the structural approach emerged
as a powerful approach for complex pattern in Pattern Recognition.

Representing objects by graphs turns the problem of object comparison into a graph
matching (GM) one where an evaluation of structural and attributed similarity of two
graphs have to be found. Based on that, the parts of objects can be described by vertices
that are enriched with properly defined attributes while the edges of graphs represent the
relationships between these parts.

Over the last decades, researchers have shed light on GM in several domains in com-
puter science and mathematics: pattern recognition, computer vision, flow analysis, object
tracking, person re-identification, image labeling, and the list can be still extended. Re-
cently, GM has been considered as a fundamental problem in PR. The attributes of both
vertices and edges play an important role in GM. Combining both symbolic and numerical
attributes on vertices and edges makes the extracted vertices and edges more meaningful
and highly representative. Unlike the other graphs used in other fields (e.g., shortest path)
where the combination of symbolic and numeric attributes is not necessarily needed.

GM problems are all NP-hard except for graph isomorphism, for which it has not yet
been demonstrated if it belongs to NP or not [140, 35]. Roughly speaking, GM can be
divided into two broad categories: exact GM and error-tolerant GM. Exact GM addresses
the problem of detecting identical (sub)structures of two graphs G1 and G2 and their
corresponding attributes. This category assumes the existence of only noise-free graphs
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representing objects while in reality objects are usually affected by noise and distortion.
Consequently, researchers in PR often shed light on the other category, i.e., error-tolerant
GM. By using error-tolerant techniques, one can match graphs, whether identical or not,
and a similarity measure as well as vertex-to-vertex matching can be obtained once the
matching process is achieved.

In the context of attributed graphs, the problem of error-tolerant GM presents a higher
complexity than exact GM as it takes distortion and noise into account during the match-
ing process. Indeed, the exact algorithms dedicated to solving error-tolerant GM are
computationally complex [140, 98]. Consequently, lots of works have been employed to
approximately solve error-tolerant GM problem. Generally, approximate methods have
been investigated based on genetic algorithms [3], linear sum assignment problem [106],
concave and convex continuous relaxation [86]. The aforementioned techniques are ex-
pected to present a polynomial run-time. However, they cannot ensure the quality of their
solutions and are likely to output suboptimal solutions whose quality has not been deeply
studied yet.

Another error-tolerant GM approach is achieved by a set of graph edit operations:
insertions, deletions and substitutions of vertices as well as edges. The cheapest sequence
of operations needed to transform one of the two graphs into another is computed. This
approach is referred to in the literature as graph edit distance (GED). Similar to the
other error-tolerant GM problems, the complexity of GED is exponential in the number
of vertices of the involved graphs. Such a fact limits GED algorithms to match relatively
small graphs. To overcome this problem, two main directions have been adopted in the
literature. First, few exact methods based on admissible lower bounds have been proposed
for pruning the search space and thus for postponing the graph size restriction (e.g.,
[60, 153]). A widely used exact method for edit distance computation is based on the
A∗ algorithm [63]. One drawback of such a method is an important memory load in
tree traversal for storing pending solutions to be explored. Second, many approximate
methods have been put forward to simplify the GED problem (e.g., bipartite GM where
certain edge constraints are relaxed [106]). However, they are not as precise as the exact
ones. Indeed, there is a trade-off between precision and run time. In order not to lose the
matching quality, in this thesis, we focus on exact GED methods aiming at tackling their
high memory and time consumption.

Generally speaking, branch-and-bound like methods (i.e., tree-search based methods)
always find a sequence of improved solutions towards the final answer. Once a solution is
found, it becomes an upper bound. This kind of methods can be transformed into anytime
methods [157] by varying the computational time and studying the effect on the outputted
answers. Based on that, we propose a depth-first algorithm for GED and transform it into
an anytime algorithm. Such a method clearly shows the trade-off between answer quality
(i.e., distance and matching accuracy) and run time.

In the meantime, heavy computation tasks have moved from desktop applications
to servers in order to spread the computation load on many machines. This paradigm
leads to re-design methods and thus improve their scalability and performance. Theory
and practice have shown that using distributed clusters is fruitful for reducing run time.
Based on this fact, it is also possible to reduce memory consumption and run time of GED
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methods, and thus to be able to match larger graphs. To this end, we enhance the run
time of our anytime GED method through parallel and distributed systems. However,
several questions should be raised before designing a parallel or a distributed architecture
for GED. First, how to divide the GED problem into subtasks? Second, how to distribute
tasks among a certain number of threads? Third, how to make sure that the tasks load
is balanced between all threads during the whole matching process? In the thesis we will
tackle this problem and discuss it in detail.

Approximate GM methods have been evaluated in a classification context without a
precise evaluation of the quality of their outputted answers. Moreover, the scalability of
the proposed methods has not been evaluated. Such facts shed the light on the need for
performance evaluation metrics that are able to judge the quality of the resulting outputs
of GM methods. Thus, in this thesis, we put forward a GM repository along with novel
performance evaluation metrics dedicated to testing the precision of GED methods when
having various graphs’ types and sizes. Four databases, taken from the literature, with
different characteristics are integrated in the repository. Each graphs pair is annotated
with the best solution found by a literature method.

To detail all these contributions, this thesis is organized as follows:

In Chapter 2, notations, definitions and concepts used in the thesis are presented. We
also dig into the details of existing GM problems. Then, we explore the methods dedicated
to these problems. A particular focus on GED problem and its associated techniques is
given. Based on this study, we summarize the important contributions of our work in light
of the limitations of existing GED methods.

In Chapter 3, we propose and explain the interest of anytime algorithms in GM. We
describe how to convert a tree-based error-tolerant GM method into an anytime one that
is able to find a list of improved solutions and eventually converges to the optimal one
instead of providing only one solution (i.e., the optimal solution). As an application of
that, we propose a depth-first GED method that outperforms A∗ and then we convert it
to an anytime algorithm.

In Chapter 4, we focus on the literature of parallel and distributed branch-and-bound
(BnB) algorithms aiming at having a scalable depth-first GED method. We also outline
our parallel and distributed GED algorithms. A theoretical conclusion of both methods is
given.

Chapter 5 is dedicated to the experiments of all the methods that are presented in
the thesis. This chapter consists of four parts: First, we put forward a graph database
repository annotated with low level information like graph edit distances and their match-
ing correspondences. Second, a set of metrics to assess GED is also proposed. Third, the
experiments of the methods proposed in the thesis are conducted on the databases of the
repository. A discussion is raised after each experiment. Finally, this chapter ends with
classification tests and concluding remarks.

In Chapter 6, a more global discussion is provided. We highlight some research points
that should be further studied and conclude this thesis. We also point out the possible
lines of future research.
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State of the Art
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Chapter 2

Strength and Weakness of Actual
Graph Matching Methods

The art challenges the technology, and the technology inspires the art. John Lasseter

(Director)
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Abstract

In this chapter, we present an overview of the definitions and the concepts that underlie
the presented works in the thesis. We also dig into the details of existing Graph Matching
problems as well as methods dedicated to solving them. A particular focus on Graph Edit
Distance problem and techniques is made in the last section of this chapter.

2.1 Definitions and Notations

2.1.1 Graph

Graphs are an efficient data structure and the most general formalism for object repre-
sentation in structural Pattern Recognition (PR). They are basically composed of a finite
or infinite set of vertices V , that represents parts of objects, connected by a set of edges
E ⊆ V XV , that represents the relations between these two parts of objects, where each
edge connects two vertices in the graph. Formally saying, e(ui, uj), or eij , where both ui
and uj are vertices that belong to the set V .
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2.1. DEFINITIONS AND NOTATIONS

Definition 1 Graph
G = (V,E)
V is a set of vertices
E is a set of edges such that E ⊆ V × V

2.1.2 Subgraph

A subgraph Gs is a graph whose set of vertices Vs and set of edges Es form subsets of
the sets V and E of graph G. A subgraph Gs of graph G is said to be induced (or full) if,
for any pair of vertices ui and uj of Gs, e(ui, uj) is an edge of Gs if and only if e(ui, uj) is
an edge of G. In other words, Gs is an induced subgraph of G if it has exactly the edges
that appear in G over the same vertices set, i.e., Es = E ∩ Vs × Vs

Definition 2 Subgraph
Vs ⊆ V
Es ⊆ E ∩ Vs × Vs

Figure 2.1 shows a subgraph Gs in a graph G.

v2 v1 

v4 v3 

Graph G Graph Gs 

Figure 2.1: A subgraph Gs: e(v2, v3), e(v3, v4), e(v4, v2) of graph G

2.1.3 Directed and Undirected Graphs

A graph G is said to be undirected when each edge eij of the set E has no direction.
This kind of graphs represents a symmetric relation. Mathematically saying: e(ui, uj)
∈ E ⇔ e(uj , ui) ∈ E. In contrast to the directed graphs which respect the direction that
is assigned to each edge eij . Thus, for the directed graphs e(ui, uj) 6= e(uj , ui).

2.1.4 Attributed Graphs

Non-attributed graphs are only based on their neighborhood structures defined by
edges, e.g., molecular graphs where the structural formula is considered as the representa-
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2.1. DEFINITIONS AND NOTATIONS

tion of a chemical substance. Thus, no attributes can be found on neither the edges nor the
vertices of graphs. Whereas in attributed, or labelled, graphs (AG), significant attributes
can be found on edges, vertices or both of them which efficiently describe objects (in terms
of shape, color, coordinate, size, etc.) and their relations.

In AGs, two extra parameters have been added (µ, ζ) where vertices’ attributes and
edges’ attributes are represented successively.

Mathematically speaking, AG is considered as a set of 6 tuples (V ,E,LV ,LE ,µ,ζ) such
that:

Definition 3 Attributed Graph
G = (V ,E,LV ,LE,µ,ζ)
V is a set of vertices
E is a set of edges such as E ⊆ V × V
LV is a set of vertex attributes
LE is a set of edge attributes
µ : V → LV . µ is a vertex labeling function which associates the label lui to a vertex ui
ζ : E → LE. ζ is an edge labeling function which associates the label leij to an edge eij

Definition 3 allows to handle arbitrarily structured graphs with unconstrained labeling
functions. For example, attributes of both vertices and edges can be part of the set
of integers L = {1, 2, 3, · · · }, the vector space L = Rn and/or a finite set of symbolic
attributes L = {x, y, z, · · · }.

In PR, a combination of both symbolic and numeric attributes on vertices and edges is
required in order to describe the properties of vertices and their relations. For notational
convenience, directed attributed relational graphs are simply referred to as graphs in the
rest of the thesis.

2.1.5 Graph Size

The graph order |V | refers to the number of vertices of the given graph G.

2.1.6 Vertex Degree

The degree of vertex ui refers to the number of edges connected to ui. Note that when
the graph G is directed then one should consider ui’s in-degree and out-degree where the
in-degree refers to the number of incoming edges and the out-degree refers to the number
of outgoing edges of vertex ui.

2.1.7 Graph Density

Graph Density is the ratio of the number of edges divided by the number of edges of
a complete graph with the same number of vertices. Dense graphs represent graphs with
large vertices’ degrees (i.e., large number of edges connected to each vertex ui in the graph
G) while sparse graphs represent graphs with low vertices’ degrees.
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2.1. DEFINITIONS AND NOTATIONS

Figure 2.2: Two examples of bipartite graphs

2.1.8 Special Graphs

Planar Graph This term refers to any graph that can be embedded in the plane, i.e.,
it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

Weighted Graph This kind of graphs is a particular case of attributed graphs where
LE = R such that edge attribute leij represents the weight of an edge e(ui, uj).

Directed Acyclic Graph A directed acyclic graph is a directed graph with no directed
cycles, such that there is no way to start at some vertex ui and follow a sequence of edges
that eventually loops back to ui again.

Bipartite Graph This term refers to any graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U to one in V ; that is, U
and V are each independent sets. Figure 2.2 illustrates two examples of a bipartite graph.

Simple Graph A simple graph is a graph that does not contain self-loops or multi-edges
(i.e., two or more edges connecting the same two vertices in a graph).

2.1.9 Graph Matching

Graph matching (GM) is the process of finding a correspondence between the vertices
and the edges of two graphs that satisfies some (more or less stringent) constraints ensuring
that similar substructures in one graph are mapped to similar substructures in the other.
Matching problems are divided into two broad categories: the first category contains
exact GM problems that require a strict correspondence among the two objects being
matched or at least among their subparts. The second category defines error-tolerant
GM problems, where a matching can occur even if the two graphs being compared are
structurally different to some extent. GM, whether exact or error-tolerant, is applied on
patterns that are transformed into graphs. This approach is called structural in the sense
of using the structure of the patterns to compare them.
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2.1. DEFINITIONS AND NOTATIONS

In the following sections we focus on graph-based matching problems in Pattern Recog-
nition. For the sake of clarity, we start from the easiest problem to express up to the hardest
one and then we shed light on the problem that is tackled in the thesis.

2.1.10 Exact Graph Matching

In this type of problems and at the aim of matching two graphs, significant part of the
topology together with the corresponding vertex and edge attributes in the graphs G1 and
G2 have to be identical. Exact GM methods can only be efficiently applied on attributed
graphs whose attributes are symbolic or non-attributed graph. For any algorithm proposed
for solving an exact GM problem, a yes or no answer is outputted. In other words, the
output of each exact GM algorithm indicates whether or not a (sub)graph is found in
another graph. When a (sub)graph is found, it will be identified in both of the involved
graphs. This problem is not directly tackled in the thesis. However, it is considered as the
basis of GM problems thanks to its easiness to be explained. Thus, in this section, formal
introductions of exact GM problems is given.

2.1.10.1 Graph isomorphism

The mapping, or matching, between the vertices of the two graphs must be edge-
preserving in the sense that if two vertices in the first graph are linked by an edge, they
are mapped to two vertices in the second graph that are linked by an edge as well. This
condition must be held in both directions, and the mapping must be bijective. That
is, a one-to-one correspondence must be found between each vertex of the first graph
and each vertex of the second graph. When graphs are attributed, attributes have to be
identical. More formally, when comparing two graphs G1 = (V1,E1,LV1 ,LE1 ,µ1,ζ1) and G2

= (V2,E2,LV2 ,LE2 ,µ2,ζ2) we are looking for a bijective function f : V1 → V2 which maps
each vertex ui ∈ V1 onto a vertex vk ∈ V2 such that certain conditions are fulfilled:

Definition 4 Graph isomorphism
A bijective function f : V1 → V2 is a graph isomorphism from G1 to G2 if:

1. ∀ui ∈ V1, µ1(ui) = µ2(f(ui))

2. ∀(ui, uj) ∈ V1 × V1, e(ui, uj) ∈ E1 ⇔ e(f(ui), f(uj)) ∈ E2

3. ∀e(ui, uj) ∈ E1, ζ1(e(ui, uj)) = ζ2(e(f(ui), f(uj)))

Figure 2.3 depicts an instance of the graph isomorphism problem. Note that G1 and G2

can be called source and target graphs, respectively. Both G1 and G2 are simple graphs.
In this thesis, we also consider matching of simple graphs.

Graph isomorphism is one of the problems for which it has not yet been demonstrated
if it belongs to NP-complete or not. However, there is still no algorithm that can solve the
problem in polynomial time. Yet, readers who are aware of the recent rise of graph iso-
morphism might have heard about the claim of Babai in [11] of solving graph isomorphism
in quasipolynomial time.
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2.1. DEFINITIONS AND NOTATIONS

u2 u1 

u3 

Graph  G1 Graph  G2 

v2 v1 

v3 

Figure 2.3: Graph isomorphism between G1 and G2

2.1.10.2 Induced Subgraph Isomorphism (SGI)

It requires that an isomorphism holds between one of the two graphs and a vertex-
induced subgraph of the other. More formally, when comparing two graphsG1 = (V1,E1,LV1 ,LE1 ,µ1,ζ1)
and G2 = (V2,E2,LV2 ,LE2 ,µ2,ζ2) we are looking for a function f : V1 → V2 which maps
each vertex ui ∈ V1 onto a vertex uj ∈ V2 such that certain conditions are fulfilled :

Definition 5 Induced subgraph isomorphism
An injective function f : V1 → V2 is a subgraph isomorphism from G1 to G2 if:

1. ∀ui ∈ V1, µ1(v) = µ2(f(ui))

2. ∀(ui, uj) ∈ V1 × V1, e(ui, uj) ∈ E1 ⇔ e(f(ui), f(uj)) ∈ E2

3. ∀e(ui, uj) ∈ E1, ζ1(e(ui, uj)) = ζ2(e(f(ui), f(uj)))

In its exact formulation, the subgraph isomorphism must preserve the labeling, i.e., µ1(ui) =
µ2(vk) and ζ1(e(ui, uj)) = ζ2(e(vk, vz)) where ui, uj ∈ V1, vk, vz ∈ V2, e(ui, uj) ∈ E1 and
e(vk, vz) ∈ E2.

Figure 2.4 depicts an instance of the graph isomorphism problem. The NP-completeness
proof of subgraph isomorphism can be found in [55].

2.1.10.3 Monomorphism

Monomorphism, also known as partial subgraph isomorphism, is a light form of induced
subgraph isomorphism. It also drops the condition that the mapping should be edge-
preserving in both directions. It requires that each vertex of the source graph is mapped to
a distinct vertex of the target graph, and each edge of the source graph has a corresponding
edge in the target graph. However, the target graph may have both extra vertices and
extra edges.

The subgraph monomorphism problem between a pattern graph G1 and a target graph
G2 is defined by:
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2.1. DEFINITIONS AND NOTATIONS

u2 u1 

u3 

Graph G1 Graph G2 

v2 v1 

v4 v3 

Figure 2.4: Induced subgraph isomorphism

Definition 6 Monomorphism
An injective function f : V1 → V2 is a subgraph isomorphism from G1 to G2 if:

1. ∀ui ∈ V1, µ1(ui) = µ2(f(ui))

2. ∀e(ui, uj) ∈ E1, (f(ui), f(uj)) ∈ E2

3. ∀e(ui, uj) ∈ E1, ζ1(e(ui, uj)) = ζ2(e(f(ui), f(uj)))

As in SGI, in the exact formulation of subgraph monomorphism problem, the sub-
graph isomorphism must preserve the labeling, i.e., µ1(ui) = µ2(vk) and ζ1(e(ui, uj)) =
ζ2(e(vk, vz)) where ui, uj ∈ V1, vk, vz ∈ V2, e(ui, uj) ∈ E1 and e(vk, vz) ∈ E2.

2.1.10.4 Maximum Common Subgraph (MCS)

Maximum Common Subgraph is the problem of mapping a subgraph of the source
graph to an isomorphic subgraph of the target graph. Usually, the goal is to find the largest
subgraph for which such a mapping exists. Actually, there are two possible definitions of
the problem, depending on whether vertex-induced subgraphs or partial subgraphs are
used. In the first case, the maximality of the common subgraph refers to the number of
vertices, while in the second one it is the number of edges that is maximized.

Definition 7 Maximum Common Subgraph (MCS)
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. A graph Gs = (Vs, Es) is said to be a
common subgraph of G1 and G2 if there exists subgraph isomorphism from Gs to G1 and
from Gs to G2. The largest common subgraph is called the maximum common subgraph,
or MCS, of G1 and G2.

2.1.11 Error-Tolerant Graph Matching Problems

The stringent constraints imposed by exact GM are, in some circumstances, too rigid
for the comparison of two graphs. So the matching process must be tolerant: it must
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accommodate the differences by relaxing, to some extent, the constraints that define the
matching type.

2.1.11.1 Problem Transformation: from Exact to Error-Tolerant

Error-tolerant matching is generally needed when no significant identical part of the
structure together with the corresponding vertex and edge attributes in graphs G1 and
G2 can be found. Instead, matching G1 and G2 is associated to a penalty cost. For
example, this case occurs when vertex and edge attributes are numerical values (scalar or
vectorial). The penalty cost for the mapping can then be defined as the sum of the distances
between label values. A first solution to tackle such problems relies on a discretization
or a classification procedure to transform the numerical values into nominal/symbolic
attributes. The main drawback of such approaches is their sensitivity to frontier effects of
the discretization or misclassification. A subsequent exact GM algorithm would then be
unsuccessful. A second solution consists in using exact GM algorithms and customizing
the compatibility function for pairing vertices and edges. The main drawback of such
approaches is the need to define thresholds for these compatibilities. A last way consists
in using an error-tolerant GM procedure that overcomes this drawback by integrating the
numerical values during the mapping search. In this case, the matching problem turns
from a decision one to an optimization one.

2.1.11.2 Substitution-Tolerant Subgraph Isomorphism

Substitution-Tolerant Subgraph Isomorphism [80] aims at finding a subgraph isomor-
phism of a pattern graph Gs in a target graph G. This isomorphism only considers label
substitutions and forbids vertex and edge insertion in G. This kind of subgraph isomor-
phism is often needed in PR problems when graphs are attributed with real values and
no exact GM can be found between attributes due to noise. A subgraph isomorphism is
said to be substitution-tolerant when the mapping does not affect the topology. That is,
each vertex and each edge of the pattern graph has a one-to-one mapping into the target
graph, however, two vertices and/or edges can be matched (or substituted) even if their
attributes are not similar. A substitution-tolerant mapping is generally needed when no
exact mapping between vertex and/or edge attributes can be found, but when the mapping
can be associated to penalty cost. For example, this case occurs when vertex and edge
attributes are numerical values (scalar or vectorial) resulting from a feature extraction
step as often in pattern analysis. See Figure 2.5.
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0.5 

u3 

Graph G1 Graph G2 

0.3 

v3 

0.15 
0.13 

Figure 2.5: Substitution-tolerant subgraph isomorphism problem. G1 and G2 are at-
tributed graphs, the mapping takes the difference between the attributes into account.
Mappings are also edge-preserving

Definition 8 Substitution-Tolerant Subgraph Isomorphism
An injective function f : V1 → V2 is a subgraph isomorphism ofG1 = (V1,E1,LV1 ,LE1 ,µ1,ζ1)
and G2 = (V2,E2,LV2 ,LE2 ,µ2,ζ2) if the following conditions are satisfied:

1. ∀ui ∈ V1, µ1(ui) ≈ µ2(f(ui))

2. ∀(ui, uj) ∈ V1 × V1, e(ui, uj) ∈ E1 ⇔ e(f(ui), f(uj)) ∈ E2

3. ∀e(ui, uj) ∈ E1, ζ1(e(ui, uj)) ≈ ζ2(e(f(ui), f(uj)))

In PR applications, where vertices and edges are labeled with measures which may be
affected by noise, a substitution-tolerant formulation which allows differences between
attributes of mapped vertices and edges is mandatory. However, these differences are
associated to costs where the objective is to find the mapping corresponding to the minimal
global cost, if one exists. i.e., µ1(ui) ≈ µ2(vk) and ζ1(e(ui, uj)) ≈ ζ2(e(vk, vz)).

Figure 2.5 depicts the substitution-tolerant subgraph isomorphism problem.

2.1.11.3 Error-Tolerant Subgraph Isomorphism

Error-Tolerant Subgraph Isomporphism [94] takes into account the difference in topol-
ogy as well as attributes. Thus, it requires that each vertex/edge of graph G1 is mapped
to a distinct vertex/edge of graph G2 or to a dummy vertex/edge. This dummy elements
can absorb structural modifications between the two graphs.
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(b) Error-Tolerant Subgraph Isomor-
phism of the graphs G1 and G2. Note that
the green dashed line on G2 represents an
edge deletion.

Figure 2.6: Error-Tolerant Subgraph Isomorphism of G1 and G2

Definition 9 Error-Tolerant Subgraph Isomorphism
An injective function f : V1 → V2 is an error-tolerant subgraph isomorphism from G1

= (V1,E1,LV1 ,LE1 , µ1,ζ1) to G2 = (V2,E2,LV2 ,LE2 ,µ2,ζ2) if the following conditions are
satisfied:

1. ∆V2 is a set of dummy vertices

2. ∆E2 is a set of dummy edges

3. ∀ui ∈ V1, f(ui) ∈ V2 ∪∆V2

4. ∀e(ui, uj) ∈ E1, e(f(ui), f(uj)) ∈ E2 ∪∆E2

5. ∀ui ∈ V1, µ1(ui) ≈ µ2(f(ui)) and ∀e(ui, uj) ∈ E1, ξ1(e(ui, uj)) ≈ ξ2(e(f(ui), f(uj)))

The error-tolerant subgraph isomorphism of graphs G1 and G2 is depicted in Figure
2.6.
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2.1.11.4 Error-Tolerant Graph Matching

A significant number of error-tolerant GM algorithms base the definition of the match-
ing cost on an explicit model of the errors (deformations) that may occur (i.e., missing
vertices, etc.), assigning a possibly different cost to each kind of error. These algorithms
are often denoted by error-correcting or error-tolerant [35, 91].

Definition 10 Error-Tolerant GM
A function f : V1∪{ε} → V2∪{ε} is an error-tolerant GM from G1 = (V1,E1,LV1 ,LE1 , µ1,ζ1)
to G2 = (V2,E2,LV2 ,LE2 ,µ2,ζ2) where ε refers to the empty vertex. Considering only
nonempty vertices, f is bijective. However, when taking into account ε, several vertices
from V1 can be mapped to ε. Such an operation is referred to as deletion of these vertices
from V1. Similarly, ε can be mapped to several vertices from V2 representing the insertion
of these vertices in v1. Formally, f must fulfill certain conditions:

1. f(u1) 6= ε⇒ f(u1) 6= f(u2 ∀u1, u2 ∈ V1

2. f−1(v1) 6= ε⇒ f−1(v1) 6= f−1(v2) ∀v1, v2 ∈ V2

Figure 2.7 depicts the error-tolerant graph isomorphism problem.

0.5 

Graph G1 Graph G2 

0.3 

0.16 

f(v) 

Figure 2.7: Error-Tolerant Graph Isomorphism of the graphs G1 and G2 presented in
Figure 2.6(a). Note that the dashed vertex and the dashed line on G1 represent vertex
insertion and edge insertion operations respectively. The Dashed line on G2 depicts an
edge insertion operation

In the thesis, the term source graph refers to graph G1 while target graph refers to G2.

2.1.11.5 Error-Tolerant Matching Cost

As mentioned before, error-tolerant GM has an advantage over exact GM which lies
in error and noise tolerance in the matching process. In exact GM, when comparing two
vertices or two edges, the evaluation answer is yes or no. That is, the matching result
tells whether the vertices or edges are equal. In error-tolerant GM, a measurement of
the strength of matching vertices and/or edges is called cost. This cost is applicable on
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both graph structures and attributes. The basic idea is to assign a penalty cost to each
edit operation according to the amount of distortion that it introduces in the transforma-
tion. When (sub)graphs differ in their attributes or structures, a high cost is added in
the matching process. Such a cost prevents dissimilar (sub)graphs from being matching
since they are different. Likewise, when (sub)graphs are similar, a small cost is added to
the overall cost. This cost includes matching two vertices and/or edges, inserting a ver-
tex/edge or deleting a vertex/edge. Deletion and insertion operations are transformed to
assignments of a non-dummy vertex to a dummy vertex one. Substitutions simply indicate
to vertex-to-vertex and edge-to-edge assignments.

Formally, error-tolerant GM f : V1 → V2 is a minimization problem where the goal is
to minimize the overall cost c of matching G1 and G2.

Definition 11 Matching Cost Function

c(f) =

vertex substitutions︷ ︸︸ ︷∑
ui∈V1

f(ui)∈V2

c(ui, f(ui)) +

vertex deletions︷ ︸︸ ︷∑
ui∈V1
f(ui)=ε

c(ui, ε) +

vertex insertions︷ ︸︸ ︷∑
uj∈V2

f−1(uj)=ε

c(ε, uj) +

edge substitutions︷ ︸︸ ︷∑
e(ui,uj)∈E1

e(f(ui),f(uj))∈E2

c(e(ui, uj), e(f(ui), f(uj))) +

edge deletions︷ ︸︸ ︷∑
e(ui,uj)∈E1

e(f(ui),f(uj))=ε

c(e(ui, uj), ε) +

edge insertions︷ ︸︸ ︷∑
e(vk,vz)∈E2

e(f−1(vk),f−1(vz))=ε

c(ε, e(vk, vz)) (2.1)

2.1.11.6 Graph Edit Distance

The graph edit distance (GED) was first reported in [136, 117, 60]. GED is a dis-
similarity measure for graphs that represents the minimum-cost sequence of basic editing
operations to transform a graph into another graph by means classically included opera-
tions: insertion, deletion and substitution of vertices and/or edges. Therefore, GED can
be formally represented by the minimum cost edit path transforming one graph into an-
other. Edge operations are taken into account in the matching process when substituting,
deleting or inserting their adjacent vertices. From now on and for simplicity, we denote the
substitution of two vertices ui and vk by (ui → vk), the deletion of vertex ui by (ui → ε)
and the insertion of vertex vk by (ε → vk). Likewise for edges e(ui, uj) and e(vk, vz),
(e(ui, uj) → e(vk, vz)) denotes edges substitution, (e(ui, uj) → ε) and (ε → e(vk, vz)) de-
note edges deletion and insertion, respectively. The structures of the considered graphs do
not have to be preserved in any case. Structure violations are also subject to a cost which
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is usually dependent on the magnitude of the structure violation [110]. And so, the meta
parameters of each of deletion, insertion and substitution affect the matching process. The
discussion around the selection of cost functions and their parameters is beyond the topic
of this thesis and will not be discussed in this thesis.

Let γ(G1, G2) denote the set of edit paths that transform G1 into G2. To select the
most promising edit path among all the edit paths of γ(G1, G2), a cost, denoted by c(ed),
is introduced, see Definition 11. Thus, for each operation (edge/vertex substitutions,
edge/vertex deletions and edge/vertex insertions) a penalty cost is added. GED tries to
find the minimum overall cost (dλmin

(G1, G2)) among all generated costs.

Formally saying, GED is based on a set of edit operations edi where i = 1 . . . k and k
is the number of edit operations. This set is referred to as Edit Path.

Definition 12 Edit Path
A set {ed1, · · · , edk} of k edit operations edi that transform G1 completely into G2 is
called a (complete) edit path λ(G1, G2) between G1 and G2. A partial edit path refers to
a subset of {ed1, · · · , edq} that partially transforms G1 into G2.

Formally saying, the edit distance of two graphs is defined as follows.

Definition 13 (Graph Edit Distance)
Let G1 = (V1,E1,LV1 ,LE1 , µ1,ζ1) and G2 = (V2,E2,LV2 ,LE2 ,µ2,ζ2) be two graphs, the graph
edit distance between G1 and G2 is defined as:

dλmin
(G1, G2) = min

λ∈γ(G1,G2)

∑
edi∈λ

c(edi) (2.2)

Where c(edi) denotes the cost function measuring the strength of an edit operation
edi and γ(G1, G2) denotes the set of all edit paths transforming G1 into G2. The exact
correspondence, λmin, is one of the correspondences that obtains the minimum cost (i.e.,
dλmin

(G1, G2)).

Generally speaking, Definition 13 is constrained by vertices and so vertices of the
involved graphs are privileged during the matching process. That is, edge operations are
taken into account in the matching process when substituting, deleting or inserting their
underlying or corresponding vertices.

In GED and so error-tolerant GM, each vertex of G1 can be either matched with a
vertex in G2 or deleted (in this case it will be matched with ε). Similarly, each vertex of
G2 can be either matched with a vertex in G1 or inserted in G1 (in this case it will be
matched with ε). Likewise, edges of G1 can be either matched with edges of G2 or deleted
while edges of G2 can be either inserted in G1 or matched with edges in G1. However,
the decision of whether an edge is inserted, substituted, or deleted is done regarding the
matching of their adjacent vertices. That is, the neighborhood of edges dominates their
matching. For better understanding, see Figure 2.8. Note that in the given scenarios, ui
and uj of G1 are matched with vk and vz of G2, respectively. Formally, f(ui) = vk and
f(uj) = vz. Based on these scenarios, three cases can be identified:
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Figure 2.8: Edge mappings based on their adjacent vertices and whether or not an edge
between two vertices can be found

• If there is an edge eij = e(ui, uj) ∈ E1 and an edge ekz = e(vk, vz) ∈ E2, edges substi-
tution between e(ui, uj) and e(vk, vz) is performed (i.e., e(f(uj), f(uj)) = e(vk, vz)).

• If there is an edge eij = e(ui, uj) ∈ E1 and there is no edge between vk and vz (i.e.,
e(vu, vk) = ε), edge deletion of e(ui, uj) is performed (i.e., e(f(uj), f(uj)) = ε).

• If there is no edge between ui and uj (i.e., eij = e(ui, uj) = ε) and there is an edge
between and an edge ekz = e(vk, vz) ∈ E2, edge insertion of e(vk, vz) is performed
(i.e., e(f−1(vk), f

−1(vz)) = ε).

An example of an edit path between two graphs G1 and G2 is shown in Figure 2.9,
the following operations have been applied in order to transform G1 into G2: three edge
deletions, one vertex deletion, one vertex insertion, one edge insertion and three vertex
substitutions.

e(ui,uj)->ϵ 
3 edge deletions 

ui->ϵ 
Node deletion 

ϵ -> vk 

Node insertion 

ϵ -> e(vk,vz) 
Edge insertion 

G1 

G2 

Figure 2.9: Transforming G1 into G2 by means of edit operations. Note that vertices
attributes are represented in different gray scales

A cost function is associated with each edit operation indicating the change strength
an edit operation had done. In fact, GED directly corresponds to the definition of error-
tolerant GM, see Definition 10. Thus, GED has also been shown to be NP-hard [153].

Conditions on Cost Functions If no conditions are put on the cost functions for
deleting, inserting or substituting vertices and/or edges, then one can have infinite number
of complete edit paths λ. For example, one can insert any edi (e.g., ε → ui) and then
remove it (i.e., ui → ε) and thus by doing so with the other edit operations one can end up
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having infinite number of solutions for GED(G1, G2). In order to overcome this problem,
some constraints have to be defined for any cost function proposed for solving GED. In
[97], three constraints are illustrated. The first constraint, referred to as positivity, is
defined as follows:

c(edi) ≥ 0 s.t. edi is an edit operation on vertices or edges. (2.3)

By adding this condition, any cost function has to be non-negative.

In order not to allow inserting a vertex or edge and then deleting it, a second condition
or constraint is defined. This condition only allows substitutions to have a zero cost. That
is, the cost of deletions and insertions have to be always greater than zero. Formally:

c(edi) > 0 s.t. edi can be an insertion or a deletion of a vertex or an edge. (2.4)

However, when the attributes of two edges or two vertices that are matched differ,
a distance between attributes should be defined. Such a distance depends on the graph
database. Later in the thesis, some graph databases along with their cost functions will
be presented.

From the aforementioned constraint, one can see that substitutions are always privi-
leged. In order to prevent some expensive substitutions, deletions or insertions from being
included in the edit path, a third constraint, referred to as triangle inequality, is initialized:

c(ui → vk) ≤ c(ui → vz) + c(vz → vk)

c(ui → ε) ≤ c(ui → vz) + c(vz → ε)

c(ε→ vk) ≤ c(ε→ vz) + c(vz → vk)

(2.5)

Where ui, vk and vz are vertices that are included in an edit path. For example, a
deletion (ε→ vk) is performed if it is less expensive or equal to adding a vertex (ε→ vz)
followed by (vz → vk) (see line 3 of the third constraint). While this constraint only talks
about vertex operations, it has to be applied on not only vertices but also edges.

It has been shown by Neuhaus and Bunke [97] that for GED to be a metric, each of its
elementary operations has to satisfy not only the aforementioned properties but also one
more property, referred to as Symmetry. The Symmetry constraint is defined as follows:

c(edi) = c(ed−1
i ) (2.6)

The property includes vertices and edges’ operation edi. For instance, (ui → vk) has
to be equal to (vk → ui). Likewise, deleting a vertex (ui → ε) is equal to inserting it (i.e.,
ε→ ui).

2.1.11.7 Multivalent Matching

All the aforementioned matching problems, whether exact or error-tolerant ones, be-
long to the univalent family in the sense of allowing one vertex or one edge of one graph
to be substituted with one and only one vertex or edge in the other graph.
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In many real-world applications, comparing patterns described at different granularity
levels is of great interest. For instance, in the field of image analysis, an over-segmentation
of some images might occur whereas an under-estimation occurs in some other images
resulting in allowing several regions of one image to be correspondent, or related to, a
single region of another image. Based on this fact, multivalent matching problem emerged
to be one of the interesting problems in graph theory [29]. Multivalent matching drops
the condition that vertices in the source graph are to be mapped to distinct vertices of
the target graph. Thus, in multivalent matching, vertex in the first graph can be matched
with an empty set of vertices, one vertex or even multiple vertices in the other graph. This
matching problem is also called relational matching since GM is no longer a function but
rather a relation m ⊆ V1 × V2. The objective of this kind of matching is to minimize the
number of split vertices (i.e., vertices that are matched with more than one vertex).

Mathematically, the relation m associating a vertex of one graph to a set of vertices of
the other graph can be defined as follows:

Definition 14 Multivalent Matching
A relation m ⊆ V1 × V2 is a multivalent matching from G1 to G2 if:

1. ∀ui ∈ V1, m(ui) ≈ {vk ∈ V2|(ui, vk) ∈ m}

2. ∀vk ∈ V2, m(vk) ≈ {ui ∈ V1|(ui, vk) ∈ m}

where m(v∗) denotes the set of vertices that are associated with a vertex v∗ by the
relation m.

Figure 2.10 illustrates an example of two objects (object 1 and object 2). At a first
glance, one may think that both objects are similar, however, while there is only one
front wall in object 2 (i.e., wall 5), there are two front walls (e and f) in object 2. And
thus when both objects are transformed into relational graphs, wall 5 is matched to both
walls f and e in graph G1. Based on the aforementioned definition of multivalent, m of
the previous example is defined as: {(a, 1), (b, 2), (c, 3), (d, 4), (e, 5), (f, 5)}. Thus, in this
mapping, the set of vertices mapped with 5 in G2 is referred to as m(5) = {e, f}. In
another scenario (m= {(a, 1), (b, 2), (a, 3), (b, 4), (e, 5)}), one can remark that f in G1 is
not mapped to any vertex and thus m(f) = ∅. Since each vertex can be matched to zero,
one or many vertices, the complexity of multivalent matching dramatically increases when
compared to the aforementioned GM problems in this chapter.

2.1.11.8 Modeling Graph Matching by Hard and Soft Constraints

In [81], GM is defined by constraint-based modeling language. By using such con-
straints, any GM problem can be expressed. The constraint-based language, or so-called
synthesizer, is designed on top of Comet [139]. Once a user defines the characteristics
of the selected problem, a Comet program is automatically created. This program has
two modes: Constraint Programming (CP) and Constraint-Based Local Search (CBLS).
One of these modes is automatically used depending on the problem’s characteristics. For
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Figure 2.10: Multivalent matching example (taken from [29])

instance, CP is used for computing exact measures while CBLS is suited for computing
error-tolerant measures.

Let G1 = (V1,E1,LV1 ,LE1 ,µ1,ζ1) and G2 = (V2,E2,LV2 ,LE2 ,µ2,ζ2) be two graphs. To
match these graphs, a list of constraints can be used to specify the considered matching
problem and thus GM is turned into satisfying these selected constraints. The main
constraints family is divided into 4 sets. The first set allows to specify the minimum and
maximum number of vertices a vertex is matched to. The second set ensures that a set U
of vertices is injective. The third set permits to identify clearly that a couple of vertices
must be matched to a couple of vertices connected by an edge. The fourth set ensures
that the labels of matched vertices or edges must be equal. Each constraint can be either
a hard or a soft one. Hard constraints cannot be violated while soft ones may be violated
at some given cost. Thus, for each soft constraint, a violation cost is needed such that the
similarity is maximized.

Figure 2.11 illustrates two graphs G1 and G2. One can model the problem of whether
one of the two graphs is included into the other using hard and soft constraints. For
instance, if all the four constraints are hard, the problem is turned to be Induced Subgraph
Isomorphism, see Section 2.1.10.2. On the other hand, if the constraints are a mixture of
hard and soft constraints, the problem becomes graph Partial Subgraph Isomorphism, see
Section 2.1.10.3.
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Figure 2.11: An example of two graphs G1 and G2. The objective is to de-
cide whether one graph is included into the other. If constraints on edges are
hard, the problem is Induced Subgraph Isomorphism. If constraints are both hard
and soft ones, the problem is graph Partial Subgraph Isomorphism (Taken from
http://contraintes.inria.fr/∼fages/SEMINAIRE/Solnon09.pdf)

2.1.11.9 Graph Edit Distance as Quadratic Assignment Problem

GED can be reformulated as a quadratic assignment problems (QAPs) [14]. QAPs
belong to the class of NP-hard problems. Over last three decades, extensive research has
been done on QAPs. In [115], Sahni and Gonzalez have shown that the QAP is NP-hard
and that even finding a suboptimal solution within some constant factor from the optimal
solution cannot be done in polynomial time unless P=NP.

As a well-known quadratic assignment application, we mention the flow matrix. The
objective is to find an assignment of all facilities to all locations (i.e., a permutation
p ∈ ΠN ), such that the total cost of the assignment is minimized. Given a set N =
{1, 2, · · · , n} and n × n matrices F = (fij) and D = (dp(i)p(j)), the quadratic assignment
problem (QAP) can then be defined as follows:

min
p∈ΠN

n∑
i=1

n∑
j=1

fijdp(i)p(j) +
n∑
i=1

cip(i) (2.7)

where F = (fij) is the flow of materials from facility i to facility j whereas D =
(dp(i)p(j)) is the matrix whose elements dkl represent the distance from location p(i) to
location p(j). The cost of simultaneously assigning facility i to location p(i) and facility j
to location p(k) is fijdp(i)p(j). Finally, cip(i) is the cost of placing facility i at location p(i).
For a comprehensive survey of QAPs, we refer the interested reader to [24].

In order to reformulate GED as QAP, two challenging points have been considered.
First, having equal cardinality matrices taking into account the unequal cardinality of
vertices and edges in the involved graphs of GED. Second, GED is more general than
QAP since it does not necessarily assign each vertex or edge in G1 to a vertex or an edge
in G2. That is, GED also allows the deletion of vertices and edges of G1 as well as the
insertion of vertices and edges of G2.
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These issues have been solved by adding empty vertices and so edges in the list of
vertices, as stated here:

V ∆
1 = V1 ∪ {ε1, ε2, · · · εm}
V ∆

2 = V2 ∪ {ε1, ε2, · · · εn}

where n = |V1| and m = |V2|. Therefore, the adjacency matrices of G1 and G2 (i.e., A
and B respectively) are defined as follows:

A(n+m)×(n+m) =

a11 ... ... a1n ε ε ... ε
... ... ... ... ε ε ... ε
... ... ... ... ... ... ... ...
an1 ... ... ann ε ... ε ε

ε ε ... ε 0 ... ... 0
ε ε ... ε ... ... ... ...
... ... ... ... ... ... ... ...
ε ... ε ε 0 ... ... 0

B(n+m)×(n+m) =

b11 ... ... b1m ε ε ... ε
... ... ... ... ε ε ... ε
... ... ... ... ... ... ... ...
bm1 ... ... bmm ε ... ε ε

ε ε ... ε 0 ... ... 0
ε ε ... ε ... ... ... ...
... ... ... ... ... ... ... ...
ε ... ε ε 0 ... ... 0

The elements of the matrices A and B indicate whether an edge can be found between
vertices. For instance, if there is an edge between ui and uj in G1, aij ∈ A will refer to
that edge. Note that in A and B there is no edge between any vertex ui and an empty
vertex, the contrary is also true. That is, ε is found for the impossible cases.

Based on V ∆
1 and V ∆

2 , the cost matrix C can be established as follows:

The left upper corner of the matrix contains all possible vertex substitutions (i.e.,
ui → uj), the diagonal of the right upper matrix represents the cost of all possible vertex
deletions (i.e., ui → ε) and the diagonal of the bottom left corner contains all possible
vertex insertions (i.e., ε→ uj). The bottom right corner elements cost is set to zero which
concerns the substitution of ε→ ε.

Now that all elements are ready (i.e., the adjacency matrices A and B and the cost
matrix C), equation 2.7 can be rewritten as follows:

dmin = min
(ϕ1,ϕ2,···ϕn+m)∈Πn+m

n+m∑
i=1

ciϕ(i) +
n+m∑
i=1

n+m∑
j=1

c(aij → bϕiϕj ) (2.8)
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C(n+m)×(n+m) =

c1,1 ... ... c1,m c1,ε ∞ ... ∞
... ... ... ... ∞ c2,ε ... ∞
... ... ... ... ... ... ... ...
cn,1 ... ... cn,m ∞ ... ∞ cn,ε

cε,1 ∞ ... ∞ 0 ... ... 0
∞ cε,2 ... ∞ ... ... ... ...
... ... ... ... ... ... ... ...
∞ ... ∞ cε,m 0 ... ... 0

where Πn+m refers to the set of all (n + m)! possible permutations of the integers
1, 2, · · · , (n + m). The first linear term

∑n+m
i=1 ciϕ(i) is dedicated to the sum of vertex

edit costs while the second quadratic term
∑n+m

i=1

∑n+m
j=1 c(aϕiϕj → bϕiϕj ) refers to the

underling edge cost resulted from the permutation (ϕ1, ϕ2, · · ·ϕn+m). For instance, if
vertex ui ∈ V ∆

1 is matched with vertex vk ∈ V ∆
2 and vertex uj ∈ V ∆

1 is matched with
vertex vz ∈ V ∆

2 , then edge e(ui, uj) has to be matched with edge e(vk, vz). These edges
are kept in aij and bkz, respectively. As previously mentioned, edges might be empty.

2.1.12 Matching Difficulties

In this section a revision of all the aforementioned problems, whether univalent or mul-
tivalent, is conducted. Figure 2.12 summarizes all the discussed problems and highlights
two properties:

• Difficulty property: one can see that the difficulty increases when looking at Figure
2.12 from top to bottom. That is, the difficulty of multivalent matching is the highest
while the one of exact GM is the lowest.

• Constraint property: Unlike exact and error-tolerant matching which belong to the
univalent class, multivalent matching has the least constraints since it allows the
matching of one to none, one to one, one to many and many to many.

2.2 Synthesis of Error-Tolerant Graph Matching Methods

2.2.1 Motivation

Restricting applications to exact GM is obviously not recommended. In reality, objects
suffer from the presence of both noise and distortions, due to the graph extraction process.
Thus, exact GM algorithms fail to answer whether two graphs G1 and G2 are, not identical,
but similar. In addition, when describing non-discrete properties of an object, graph
vertices and edges are attributed using continuous attributes (i.e., L ⊆ R). Such objects
(i.e., with non-discrete labels) are likely to be nonidentical. In this thesis, as a first step and
since the complexity of multivalent error-tolerant matching is even harder than univalent
error-tolerant matching, multivalent matching is not tackled.
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Figure 2.12: Graph matching difficulties according to constraints

Consequently and for all the aforementioned arguments, we focus on univalent error-
tolerant GM taking into account the applicability of its proposed methods in various real-
world applications. Error-tolerant GM, aims at relaxing, to some extent, the constraints
of the extract matching process in such a way that a similarity answer/score is given for
matching an attributed source graph with an attributed target graph while penalizing the
structure of one or both them. Error-tolerant GM techniques have been widely proposed
in the literature. In this section, we survey the methods presented in the literature to
solve error-tolerant GM. Since we cannot review all the methods, the list of methods is
considered as a non-exhaustive one. We refer the interested reader to two surveys that
focused on applications using graphs at different levels [91, 36].

2.2.2 Error-Tolerant Methods in the Literature

In our synthesis, we focus on error-tolerant GM methods that are learning-free (i.e.,
methods that are not based on a machine learning step). The reason for which we have
not focused on such methods is because there are few graph databases with ground truths.
Moreover, ground truths constructed by humans cannot be always achieved for some spe-
cific structures such as chemical structures. Thus, methods that are based on neural
networks (e.g., [54, 130, 77]) and Expectation-Maximization (EM) (e.g., [41, 7, 89]) are
not detailed in the synthesis.

We divide the methods in the literature into two big families: deterministic and non-
deterministic methods.

2.2.2.1 Deterministic Methods

Formalization by means of relaxation labeling is another type of GM formalization
that has been proposed in the literature. The very first work has been proposed in [50].
Labels of target graphs are presented as a discrete set, each vertex of the source graph is
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assigned to one label of the target graph set. The selection of a label candidate is done
using Gaussian Probability Distribution. The vertex-matching procedure is iteratively
conducted. In the beginning, an initial labeling is selected which is dependent on the
vertex attributes, vertex connectivity, etc. Afterwards, the labeling is enhanced until a
satisfying labeling is found. Such a satisfying labeling is considered as the best matching
of two graphs.

Some enhancements have been proposed in the relaxation labeling domain. [61, 74]
are the first works applying probability theory to GM where an iterative approach is
conducted using a method called probabilistic relaxation. In these works, both a Gaussian
error and the use of binary relations are justified to be enough for fully defining the whole
structure. The main drawback of the initial formulation of this technique, namely the
fact that vertex and edge labels are used only in the initialization of the matching process.
Such a drawback was overcome in [141]. A Bayesian perspective is used for both unary and
binary vertex attributes in [141]; [59]; and [146]. In [65] this method is further improved
by also taking edge labels into account in the evaluation of the consistency measure for
matching hierarchical relational models. Bayesian graph [95] has been built up on the
idea of probabilistic relaxation. The concept of Bayesian graph has also been successfully
applied to trees [135].

Spectral Graph Theory is considered as an approach of great interests for solving
GM problems [89, 34, 88, 114]. In this approach, graphs’ topology is characterized using
eigenvalues and eigenvectors of the adjacency matrix or Laplacian matrix ([147]). The
computation of eigenvalues/eigenvectors is a well studied problem that can be solved in
polynomial time. However, despite the benefits achieved using all algorithmic tools, spec-
tral methods suffer from two main limitations. First, the weakness in their representation
of vertex and/or edge attributes in PR applications, some spectral methods can deal only
with unlabeled or labeled graphs under constraints (e.g., only constrained label alphabets
or real weights assigned to edges [137].). Second, the sensitivity of eigen-decomposition to-
wards structural errors as they can not cope with graphs affected by noise, such as missing
or extra vertices [22].

In the literature, researchers also focused on GED and proposed lots of approaches
for solving it. In [23] a distance measure based on the maximal common subgraph of two
graphs is proposed. This defined distance is a metric that does not depend neither on
the edit distance nor on the costs of the edit operations. The well-known A∗ algorithm
[101] has been employed for solving GED. A∗ along with a lower bound can prune off the
underlying search tree by decreasing the number of explored nodes and edges. However,
because of the combinatorial explosion of the search tree of GED, the problem is still
known to be NP-hard. A linear programming formulation of GED has been reported in
[71], such a formulation is applicable only on graphs whose edges are unattributed.

An algorithm in [82], referred to by the Integer Projected Fixed Point Method (IPFP),
is proposed for GM. IPFP is based on QAP of GM, see Section 2.1.11.9. This algorithm is
an efficient approach, which iterates between maximizing linearly approximated objective
in discrete domain and maximizing along the gradient direction in continuous domain.
Thus, IPFP guarantees convergence properties. However, in general, this approach often
stops early with bad local maximum. In fact, since IPFP is a greedy approach which is
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based on discretization, during its execution it can find a bad local maximum.

Apart from the aforementioned methods in the section, there are also approximate
algorithms that work directly on the adjacency matrix of the graphs relaxing the combi-
natorial optimization to a continuous one like the Path Following algorithm proposed in
[152]. Path Following is based on convex-concave relaxations of the initial integer program-
ming problem. The reason of choosing convex/concave relaxations is to approximate in the
best way the objective function on the set of permutation matrices. In order to achieve the
convex-concave programming formulation, the weighted GM problem is also reformulated
as QAP over the set of permutation matrices where the quadratic term encodes the struc-
tural compatibility and the linear term encodes local compatibilities, see Section 2.1.11.9.
Then this problem is relaxed to two different optimization problems: a quadratic convex
and a quadratic concave optimization. Path Following allows to integrate the alignment of
graph structural elements with the matching of vertices with similar attributes. Finally, a
Graduated NonConvexity and Graduated Concavity Procedure (GNCGCP) [86] has been
proposed as a general optimization framework to suboptimally solve the combinatorial
optimization problems. One of the special cases in the paper is solving error-tolerant
GM. This proposal has two steps. First, graduated nonconvexity which realizes a convex
relaxation. Second, graduated concavity which realizes a concave relaxation.

2.2.2.2 Non-Deterministic Methods

The formulation of complex GM problems as combinatorial optimization has been
proposed in the literature. Genetic algorithms are considered as examples of such a for-
mulation. Matching is formalized as states (chromosomes) of a search space with a cor-
responding fitness in [3, 144, 126, 131, 10]. Genetic algorithms start with an initial pool
of chromosomes, considered as matching, which evolves iteratively into other generations
of matching. Despite the randomness of genetic algorithms in exploring the search space,
promising chromosomes can be chosen if one carefully designs genetic algorithms. These
chromosomes can then be improved during specific genetic operations. In fact, low cost
matching is prioritized which guarantees to have, though not optimal, low cost matching.
Furthermore, genetic algorithms are able to efficiently overcome the problem of both huge
search spaces and the local minima proposed for approximating GED. However, genetic
algorithms are non-deterministic in the sense of having different solutions when running
its algorithms several times.

Some generic algorithms have been proposed for solving a variety of GM problems. A
greedy algorithm has been proposed in [29]. In the beginning, an empty mapping m is
given. Then in order to fill up this set with vertex-to-vertex and edge-to-edge mappings,
a greedy way is used to choose mappings that maximize the similarity. To choose the
best vertex-to-vertex mappings, vertices that share the same in and out-edges are always
privileged. The step of finding the best candidates is repeated until finding a local optimum
solution. This algorithm is non-deterministic and thus one need to run it several times and
choose the best solution after. In order to improve this algorithm, local search algorithms
can be employed [57, 73]. Local search algorithms aim at improving solutions by locally
exploring their neighborhoods. In GM, neighborhoods can be obtained by adding or
removing vertex-to-vertex mappings in m. To choose the best neighbor to be explored,
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Tabu search is used [57, 64]. Tabu search prevents backward moves by memorizing the
last k moves, such a step overcomes the problem of local optimum from which greedy
search algorithms suffer. The authors of [129], inspired by [13], have proposed a reactive
tabu search as a generic GM algorithm where k is dynamically adapted. A hashing key
is given for each explored path. When the same mapping is explored twice (i.e. when a
collision happens in the hash table), the search must be diversified. However, when no
collision happens for a certain number of iterations, that is an indicator of the diversity
of the mappings and thus the size of k can be decreased. Finally, an Iterated reactive
tabu search is proposed in [116] where k executions of reactive search, each of which has
maxMoves/k allowed moves, are launched. In the end, the best matching found during
the k executions is kept.

2.2.3 Synthesis

In Table 2.1, we synthesize the error-tolerant GM methods, presented in the literature,
taking into account the following criteria:

• Optimality: Whether an algorithm is able to find a global minimum solution (i.e.,
the best solution among all the existing solutions or so-called optimal solution) or a
local minimum one (i.e., not necessarily an optimal solution but a suboptimal one).

• Maximum graphs size: What is the number of vertices on which an algorithm was
tested and on which it can perfectly work.

• Graphs type: Symbolic, numeric, weighted, cyclic/acyclic graphs or a mixture of
them.

• Parallelism ability: The ability of an algorithm to be run on several machines.

• Popularity: the importance that an algorithm has taken in the literature.

As depicted in Table 2.1, one can remark that exact methods cannot match graphs
whose sizes are more than 15 vertices while approximate methods can cope with graphs
of larger sizes (i.e., up to 250 vertices in the literature). This is due to the fact that exact
methods are computationally expensive. Indeed, exact methods are CPU and Memory
consuming. Not only number of vertices can make a problem hard to solve but also graphs
density and attributes. For example, matching non-attributed graphs is more difficult
than matching attributed ones since attributes can help in quickly finding the optimal or
a good near-optimal solution.

2.2.3.1 Large graphs

Based on the graph sizes reported in Table 2.1, we define the term ”large graphs” by
dividing it into two categories: exact and approximate large graphs, as shown in Table
2.2. These categories are used as a definition of large graphs in the rest of the thesis. The
maximum size of PR graphs is taken from the largest database dedicated to PR graphs,
to the best of our knowledge, it is the webpage database [105].

Approximate methods can be grouped into two families:
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Name Optimality Maximum
Graphs
Size

Graphs type Parallelism
Ability

Popularity References

String based
methods

Suboptimal thousands
of vertices
→ Hun-
dreds of
Regions

Cyclic/acyclic
symbolic graphs

++ + [66, 8]

Spectral
Theory(1)

Optimal Up to 10 Weighted
graphs ”same
size”

++ ++ [137]

Spectral
Theory(2)

Suboptimal Not precised Directed
Acyclic Graphs
(DAG)

++ ++ [46, 125]

Vertex
Assignment

Suboptimal Up to 128
vertices

Directed at-
tributed graphs

+ ++ [104, 69,
106, 58]

Genetic al-
gorithm

Suboptimal Up to 100
vertices

Various types
depending on
the application

++ - [3, 10, 53,
67]

Tabu search
based algo-
rithms

Suboptimal Up to 250
vertices

Various types
depending on
the application

++ + [116, 129]

Probabilistic
Relaxation

Suboptimal 100 vertices Various types of
graphs

– ? [141, 47],

GED-A∗ Optimal Up to 10 Various types
depending on
the application

+ ++ [23]

GED-ILP Optimal up to 10 Graphs with
unattributed
edges

+ ++ [71]

Approx
GED

Suboptimal Up to hun-
dreds of ver-
tices

Various types
depending on
the application

++ ++ [90, 106]

IPFP Suboptimal Up to 50 Weighted
graphs

++ + [82]

Path Fol-
lowing

Suboptimal Up to 100 Weighted
graphs

++ + [152]

GNCGCP Suboptimal up to 50 Unlabeled
graphs

++ + [86]

Table 2.1: Comparison between error-tolerant GM methods in terms of their optimality,
maximum graphs size, graphs type, parallelism ability and popularity

Category largest
size of PR
graphs

large
graphs

Exact Methods 843 vertices larger than
15 vertices

Approximate Methods larger than
250 vertices

Table 2.2: Defining the term ”large graphs” in both exact and approximate GM methods
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1. Reformulation of the problem: The GM problem is truncated into a simpler problem
(e.g., reducing the GM problem to an assignment problem [106]). However, solving
an approximated or a constraints-relaxed formulation does not lead to an optimal
solution of the original problem.

2. Approximate optimization: Solving the GM problem can be done by approximate
algorithms that reduce the size of the search space and thus lead to find near-optimal
or so-called approximate solutions (e.g., genetic algorithms [3] and EM algorithms
[7]).

Approximate GM methods are way faster than exact GM methods where lots of them
can be run in polynomial time and with high classification rates. However, they do not
guarantee to find nearly optimal solutions, specially when graphs are complex. Further-
more, none of the approximate methods present a formalism showing that approximate
methods provide lower or upper bounds for the reference graph edit distance within a fixed
factor (e.g., a factor of 4 in [87]). We believe that the larger the error-tolerant GM prob-
lem (i.e., the more complex the graphs), the less accurate the distance and the lower the
precision. In other words, matching two large graphs using an approximate error-tolerant
GM method leads to a large divergence when comparing it with an exact method. In
approximate problem reformulation, approximate methods only compare graphs superfi-
cially without regard to the global coherence of the matched vertices and edges. Whereas
in approximate optimization, parts of the solution space of such methods are left be-
hind or ignored. However, sometimes approximate algorithms are efficient specially when
attributes help in quickly finding the optimal or a good near-optimal solution.

A significant remark one may notice is that the size of the graphs, involved in the
experiments of all GM methods, is a hundred or so. Based on this remark, we raise the
following questions:

• Why cannot GM methods, whether exact or not, cope with graphs larger than
hundreds of vertices?

• Why referenced and publicly available datasets do not exceed hundreds of vertices?
Why they do not contain graphs with different densities and/or attributes?

– Is it because there is no need to work on larger or more complex graphs in the
PR domain?

– Is it because of the limitations of the algorithms proposed for solving GM prob-
lems?

– Or is it always because of the complexity of such problems?

These raised questions are still open research questions.

45



2.3. A FOCUS ON GRAPH EDIT DISTANCE

2.3 A Focus on Graph Edit Distance

In this chapter, we give some arguments for which we have given a focus on GED.

First, GED is an error-tolerant problem that has been widely studied and largely
applied to PR. Its flexibility comes from its generality as it can be applicable on uncon-
strained attributed graphs. Moreover, it can be dedicated to various applications by means
of specific edit cost functions.

Second, it has been shown by Neuhaus and Bunke [97] that GED can be a metric
if each of its elementary operations satisfies the three properties of metric spaces (i.e.,
positivity, symmetry and triangular inequality ), see Section 2.1.11.6.

Third, few research papers have discussed the direct relation between GED and MCS
([21]; and [19]). Indeed, with the metric constraints explained above, GED can also pass
through a maximum unlabeled common subgraph of two graphs (G1 andG2). MCS(G1, G2)
is not necessarily unique for the two graphs G1 and G2.

Last, but not least, GED has been used in different applications such as Handwriting
Recognition (i.e., [48]), Word Spotting (e.g., [108, 143]) and Palm-print classification (e.g.,
[123]).

For all the above-mentioned arguments, we mainly focus on GED as a basis of this
thesis.

2.3.1 Graph Edit Distance Computation

The methods of the literature can be divided into two categories depending on whether
they can ensure the exact matching to be found or not. For the sake of clarity in the rest of
the thesis, the term vertex refers to an element of a graph while the term node represents
an element of the search tree.

2.3.1.1 Exact Graph Edit Distance Approaches

A*-based GED A widely used method for edit distance computation is based on the
A∗ algorithm [101]. This algorithm is considered as a foundation work for solving GED.
Algorithm 1 recalls the main steps of the A∗ method.

The A*-based method for exact GED computation proceeds to an implicit enumeration
of all possible solutions without explicitly evaluating all of them [111]. This is achieved by
means of an ordered tree. Such a search tree is constructed dynamically at run time by
iteratively creating successor vertices.

Only leaf vertices correspond to feasible solutions and so complete edit paths. For a
node p in the search tree, g(p) represents the cost of the partial edit path accumulated so
far, and h(p) denotes the estimated costs from p to a leaf node representing a complete
solution. The sum g(p) + h(p) is the total cost assigned to a node in the search tree and
is referred to as a lower bound lb(p). Given that the estimation of the future costs h(p) is
lower than, or equal to, the real costs, an exact path from the root node to a leaf node is
guaranteed to be found [106].
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Algorithm 1 Astar (A* )

Input: initial state si and a goal state sg Output: a shortest path pathig from si to sg

1: OPEN ← Φ
2: OPEN .add(si)
3: while OPEN 6= Φ do
4: sb ← OPEN .minimumNode() . Remove the best node from OPEN
5: if sb.equals(sg) then . If sb is the goal state sg
6: pathig ← sb.backtrackPath() . through recorded parents backtrack from sg

until reaching si
7: Return pathig
8: end if
9: successorssb ← successors(sb) . Create the successors of sb and evaluate them

10: OPEN .add(successorssb) . add successors to OPEN and record their parent sb
11: end while

Algorithm 2 depicts the pseudo code of A∗. This algorithm is taken from [111]. How-
ever, in Algorithm 2 we illustrate it differently. The set OPEN of partial edit paths
contains the search tree nodes to be processed in the next steps. p refers to the current
node that will be explored (lines 1 and 2). In the beginning, the first level of the search
tree is constructed and inserted in OPEN (lines 3 to 6). To construct the first level of
the search tree, u1 in G1 is substituted with each vi in G2 in addition to the deletion
of u1 (i.e., u1 → ε). Algorithm 3 represents how the children of node p are generated.
The substitution (lines 3 to 6) or the deletion of a vertex (lines 7 and 8) are considered
simultaneously, which produces a number of successor nodes in the search tree. These
successors are then saved in a list Listp. Back to Algorithm 2, the most promising partial
edit path p ∈ OPEN, i.e., the one that minimizes lb(p), is always chosen first (lines 8 and
9). This procedure guarantees that the complete edit path outputted by the algorithm is
always optimal, i.e., its cost is the minimum among all possible competing paths. If all
vertices of G1 have been processed (line 11), the remaining vertices of the second graph
are inserted in a single step (lines 15 to 19). Finally, when all the branches of the tree
have been pruned, if p, whose cost is the minimum, is a complete node, p and its cost g(p)
are outputted as an optimal solution of GED(G1, G2) (line 13). Note that pendingV1 and
pendingV2 represent a set of V1 and V2 that has not yet been matched.

The edit operations on edges are implied by edit operations on their adjacent vertices.
For instance, whether an edge is substituted, deleted, or inserted, depends on the edit
operations performed on its adjacent vertices. Figure 2.13 recalls the notations of vertices
and edges of G1 and G2.

Algorithms 4, 5 and 6 represent vertex insertions, deletions and substitutions, respec-
tively. In the case of vertex insertions of vk ∈ V2 in V1, one also has to insert its adjacent
edges (i.e., each ekz), see Algorithm 4. On the other hand for vertex deletion of vi ∈ V1, one
also has to delete its adjacent edges (i.e., each eij), see Algorithm 5. Note that pendingE1

and pendingE2 refer to a set of E1 and E2 that has not yet been matched.

As for vertex substitutions (ui → vk), depicted in Algorithm 6, several cases should be
taken into account:
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Algorithm 2 Astar GED algorithm (A* )

Input: Non-empty attributed graphs G1 = (V1,E1,LV1 ,LE1 ,µ1,ζ1) and G2 =
(V2,E2,LV2 ,LE2 ,µ2,ζ2) where V1 = {u1, ..., u|V1|} and V2 = {v1, ..., v|V2|}
Output: A minimum cost edit path (pmin) from G1 to G2 e.g., {u1 → v3, u2 → ε , ε→ v2}

1: p← root node of the tree with all vertices and edges of g1 and g2 as pending lists
2: OPEN ← Φ
3: Listp ← GenerateChildren(p)
4: for p ∈ Listp do
5: OPEN .AddFirst(p)
6: end for
7: while true do
8: OPEN ← SortAscending(OPEN ) . according to l(b)=g(p)+h(p)
9: p ← OPEN.PopFirst() . Take first element and remove it from OPEN

10: Listp ← GenerateChildren(p)
11: if Listp = Φ then
12: if pendingV2(p) = Φ then
13: Return(g(p),p) . Return p and its cost (distance) as the optimal solution

of GED(G1, G2)
14: else
15: for vi ∈ pendingV2(p) do
16: q ← insertion(q,vi) . i.e., {ε→ vi}
17: p.AddFirst(q)
18: end for
19: OPEN.AddFirst(p)
20: end if
21: else
22: for p ∈ Listp do
23: OPEN .AddFirst(p)
24: end for
25: end if
26: end while

Algorithm 3 GenerateChildren

Input: A tree node p
Output: A list Listp whose elements are the children of p

1: Listp ← Φ
2: u1 ← pendingV1(p).PopFirst()
3: for vi ∈ pendingV2(p) do
4: q ← substitution(p,u1,vi) . i.e., {u1 → vi}
5: Listp.AddFirst(q) . q is a tree node
6: end for
7: q ← deletion(p, u1) . i.e., {u1 → ε}
8: Listp.AddFirst(q)
9: Return(Listp)
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ui 
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Figure 2.13: Notations recall: G1 and G2 are two graphs, eij is an edge between two
vertices vi and vj in G1 while ekz is an edge between two vertices vk and vz in G2

• If vertex uj is already deleted (i.e., uj → ε ), then eij has to be deleted (line 9).

• If vertex uj is already substituted to vertex uz, but there is no edge ekz between
vertices vk and vz then eij has to be deleted (line 13).

• If vertex uj is already substituted to vertex uz, an there is an edge ekz between
vertices vk and vz then eij is substituted to ekz (line 15).

• If vertex ui is already substituted to vertex uz, but there is no edge eij between
vertices vi and vj then ekz is inserted (line 28).

Note that the complexity of the substitution u → v is O(|adj(u)| + |adj(v)|). where
adj(u) and adj(v) are the adjacent edges of u and v, respectively.

Algorithm 4 Insertion

Input: A tree node q and a vertex vk in G2

Output: A tree node q

1: q.add(ε→ vk)
2: ListEvk = edges(vk)
3: for ekz ∈ ListEvk do
4: q.add(ε→ ekz)
5: pendingE2(q).remove(ekz) . remove ekz from the pendingE2 of q
6: end for
7: pendingV2(q).remove(vk)
8: Return(q)

Note that Algorithms 4, 5 and 6 are also used in all the methods proposed in the thesis.

Algorithm 1 presents a Best-First algorithm which ends up having tremendous number
of unnecessary nodes in memory, such a fact is considered as a drawback of this approach.
In the worst case, the space complexity can be expressed as O(|γ|) where |γ| is the cardi-
nality of the set of all possible edit paths [38]. Since |γ| is exponential in the number of
vertices involved in the graphs, the memory usage is still an issue.

There are lots of ways to solve the problem of estimating h(p) for the costs from the
current node p to a leaf node. In Section 5.3.3.1, we will study the effect of different h(p)’s
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Algorithm 5 deletion

Input: A tree node q and a vertex ui in G1

Output: A tree node q

1: q.add(ui → ε)
2: ListEui = edges(ui)
3: for eij ∈ ListEui do
4: q.add(eij → ε)
5: pendingE1(q).remove(eij)
6: end for
7: pendingV1(q).remove(ui)
8: Return(q)

on A∗.

Binary Linear Programming A binary linear programming formulation of GED is
proposed in [71]. GED between graphs is treated as finding a subgraph of a larger graph
referred to as the edit grid. The edit grid only needs to have as many vertices as the sum
of the total number of vertices in the graphs being compared. The edit grid is a complete
graph GΩ = (Ω,ΩXΩ, µΩ) where Ω denotes a set of vertices with N elements. Accordingly,
ΩXΩ is the set of undirected edges connecting all pairs of vertices. GED between G1 =
(V1,E1,LV1 ,LE1 ,µ1) and G2 = (V2,E2,LV2 ,LE2 ,µ2) can be expressed by:

GED(G1, G2) = min
P∈{0,1}NXN

N∑
i=1

N∑
j=1

c(l(Ai1), l(Aj2))P ij +
1

2
c(0, 1)|A1 − PA2P

T |ij (2.9)

where P is a permutation matrix representing all possible permutations of the elements
of edit grid. An ∈ {0, 1}NXN is the adjacency matrix corresponding to Gn in the edit
grid. P represents N2 boolean variables. N needs to be no larger than |V1| + |V2| where
|V1| and |V2| are the numbers of vertices of the involved graphs. l(Ain) is the attribute
assigned to the ith row/column of An. Finally, the function c is a metric between two
vertex attributes.

Formulation 2.9 is quadratic since it holds the product of P variables (PA2P
T ). In

order to linearize it, two matrices, S and T , are introduced (inspired by [6]), and thus a
binary linear formulation is obtained:

GED(G1, G2) = min
P,S,T∈{0,1}NXN

N∑
i=1

N∑
j=1

c(l(Ai1), l(Aj2))P ij +
1

2
c(0, 1)(S + T )ij (2.10)

s.t.

{
(A1P − PA2 + S − T )ij = 0, ∀i, j (2.10.1)∑

i P
ik =

∑
j P

kj = 1, ∀k (2.10.2)

P , S and T represent 3 × N2 boolean variables where N is the number of vertices
|V1| + |V2|. Two types of constraints are applied to the objective function. In the first
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Algorithm 6 substitution

Input: a tree node q, a vertex ui in G1 and a vertex vk in G2

Output: a tree node q

1: q.add(ui → vk)
2: ListEui = edges(ui)
3: ListEvk = edges(vk)
4: for eij ∈ ListEui do
5: uj = eij .getOtherEndVertex()
6: if q.contains(uj) then . check whether q has an edit operation that contains uj
7: vz = uj .getMatchedVertexG2();
8: if vz = ε then
9: q.add(eij → ε)

10: else
11: ekz = getEdgeBetween(vk, vz)
12: if ekz = φ then
13: q.add(eij → ε)
14: else
15: q.add(eij → ekz)
16: pendingE2(q).remove(ekz) . remove ekz from the pendingE2 of q
17: end if
18: end if
19: pendingE1(q).remove(eij)
20: end if
21: end for
22: for ekz ∈ ListEvk do
23: vz = ekz.getOtherEndVertex()
24: if q.contains(vz) then
25: uj = vz.getOtherVertexG1()
26: eij = getEdgeBetween(ui,uj)
27: if eij = φ then
28: q.add(ε→ ekz)
29: pendingE2(q).remove(ekz)
30: end if
31: end if
32: end for
33: pendingV1(q).remove(vi)
34: pendingV2(q).remove(vk)
35: Return(q)
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type of constraints, the GM problem is formulated as the minimization of the difference
in adjacency matrix norms for unattributed graphs with the same number of vertices.
The second constraints limit the set of acceptable permutation where one element of grid
(i.e., vertex) must be permuted with exactly one element. There are N2 constraints of
type 1 and 2N constraints of type 2. Finally, the model is solved by a mathematical
programming solver (lpsolve). One drawback of this method is that it does not take into
account attributes on edges which limits the range of application.

2.3.1.2 Approximate Graph Edit Distance Approaches

The main reason that motivates researchers to work on approximate GED comes from
the combinatorial explosion of exact GED methods. Therefore, numerous variants of
approximate GED algorithms are proposed for making GED computation substantially
faster. In this section, we dig into the details of the approximate methods.

Beam Search A modification of A*, called Beam-Search (BS ), has been proposed in
[90]. The purpose of BS, is to prune the search tree while searching an exact edit path.
Instead of exploring all edit paths in the search tree, a parameter x is set to an integer x
which is in charge of keeping the x most promising partial edit paths in the OPEN set.
Such an algorithm cannot always ensure the exact matching to be found. When x = 1,
BS becomes a greedy search algorithm.

Bipartite Matching As previously mentioned in Section 2.1.11.9, GED has been refor-
mulated as an instance of QAP. In [106], Riesen et al have also reformulated the assignment
problem as finding an exact matching in a complete bipartite GM. However, they have
reduced the QAP of GED computation to an instance of a Linear Sum Assignment Prob-
lem (LSAP). LSAPs as well as QAPs formulate an assignment problem of entities. Unlike
QAPs, LSAPs are able to optimize the permutation (ϕ1, · · · , ϕn+m) with respect to the
linear term (i.e

∑n+m
i=1 ciϕ(i)), see Section 2.1.11.9. That is, the matrix C is the only matrix

that is considered and the quadratic term (i.e.,
∑n+m

i=1

∑n+m
j=1 c(aϕiϕj → bϕiϕj )) is omitted

from the objective function. By doing so, the edges between vertices are neglected since
that the matrices A and B are the ones that refer to the edges of G1 and G2, respectively.
In order to reduce GED into a LSAP, local rather than global relationships are considered.

Formally saying, letG1 = (V1, E1, µ1, ξ1) andG2 = (V2, E2, µ2, ξ2) with V1 = (u1, . . . , u|V1|)
and V 2 = (v1, . . . , v|V2|) respectively. A square cost matrix Cve is constructed between G1

and G2 as follows:
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Cve =

c1,1 ... ... c1,|V2| c1,ε ∞ ... ∞
... ... ... ... ∞ c2,ε ... ∞
... ... ... ... ... ... ... ...

c|V1|,1 ... ... c|V1|,|V2| ∞ ... ∞ c|V1|,ε

cε,1 ∞ ... ∞ 0 ... ... 0
∞ cε,2 ... ∞ ... ... ... ...
... ... ... ... ... ... ... ...
∞ ... ∞ cε,|V2| 0 ... ... 0

At a first glance, this matrix looks similar to the matrix C in Section 2.1.11.9. However,
each element cij in the matrix Cve corresponds to the cost of assigning the ith vertex of
G1 to the jth vertex of G2 in addition to assigning the edges of the ith vertex of G1 to
the edges of the jth vertex of G2. For the edge edit operation costs, the minimum sum is
selected. Thus, the problem of GM is reduced to finding the minimum assignment cost
Cve such that p = p1, . . . , pn is a matrix permutation. In the worst case, the maximum
number of operations needed by the algorithm is O((n+m)3) where n and m denote |V1|
and |V2|, respectively. In the rest of the thesis, this algorithm is referred to as BP .

As in the matrix C, the left upper corner of the matrix contains all possible vertex sub-
stitutions, the diagonal of the right upper matrix represents the cost of all possible vertex
deletions and the diagonal of the bottom left corner contains all possible vertex insertions.
The bottom right corner elements cost is set to zero which concerns the substitution of
ε− ε.

Recently, two new versions of BP to compute GED, called Fast Bipartite method
(FBP) and Square Fast Bipartite method (SFBP), have been published in [121] and [122],
respectively.

In, FBP, the cost matrix is composed of only one quadrant. When |V1| 6= |V2|, the
unused cells in the matrix are filled with zeros so as to be a square matrix which is the
case of linear assignation methods [17].

Cve =

c1,1 − (c1,ε + cε,1) ... ... c1,|V2| − (c1,ε + cε,|V2|)

... ... ... ...

... ... ... ...
c|V1|,1 − (c|V1|,ε + cε,1) ... ... c|V1|,|V2| − (c|V1|,ε + cε,|V2|)

On the other hand, in SFBP, two square matrices are defined. One of them is used
depending on the order of the involved graphs. When |V1| ≤ |V2|, Cve is represented as:
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Cve =

c1,1 ... ... c1,|V2|
... ... ... ...
... ... ... ...

c|V1|,1 ... ... c|V1|,|V2|

cε,1 ∞ ... ...
∞ cε,2 ... ...
... ... ... ...
∞ ... ∞ cε,|V2|

Whereas when |V2| ≤ |V1|, Cve is represented as:

Cve =

c1,1 ... ... c1,|V2| c1,ε ∞ ... ∞
... ... ... ... ∞ c2,ε ... ∞
... ... ... ... ... ... ... ...

c|V1|,1 ... ... c|V1|,|V2| ∞ ... ∞ c|V1|,ε

FBP and SFBP have a restriction since edit costs have to be defined such that the
edit distance is a distance function [122] that is equal to BP. Thus three restrictions have
to be satisfied:

• Insertion and deletion costs have to be symmetric.

• Cvs(ui, vj) and Ces(eij , ekz) have to be defined as a distance measure.

• c(ui, vj) ≤ 2.Kv and c(eij , ekz) ≤ 2.Ke where 2.Kv and 2.Ke are the costs of inserting
and deleting vertices and edges, respectively.

In BP, FBP and SFBP when substituting, deleting or inserting vertices, their local
substructures are taken into account. Among local substructures, the degree centrality and
the clique centrality are considered as the two most used ones:

• Degree Centrality (λdegi ) of each node ui ∈ V1 is set to ki where ki refers to the
number of edges connected to ui.

• Clique Centrality (λcliquei ) of each node ui ∈ V1 is set to kij where kij refers to the
number of edges connected to ui as well as their neighboring vertices {uj}.

Figure 2.14 illustrates an example of λdegi and λcliquei . When matching graphs whose
edges are unattributed, the vertices cost includes counting the number of their neighboring
edges. In [39], in addition to λdegi and λcliquei , three other vertex centralities have been
proposed (the planar centrality, the eigenvector centrality [16] and the Google’s PageRank
centrality [18]) and their effect on SFBP is studied.
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ui ui 

Figure 2.14: Examples of the local substructures: λdegi and λcliquei . Note that λdegi = 3 and

λcliquei = 6

Improvements via Search Strategies Since BP considers local structures rather than
global ones, an overestimation of the exact GED cannot be neglected. Recently, few works
have been proposed for overcoming such a problem. Researchers have observed that BP ’s
overestimation is very often due to a few incorrectly assigned vertices. That is, only few
vertex substitutions from the next step are responsible for additional (unnecessary) edge
operations in the step after and thus resulting in the overestimation of the exact edit
distance.

In [109], a greedy swap GED is proposed, see Algorithm 7. As a first step, BP is
used to compute a first distance dbest as well as a mapping m (line 1). Then for each pair
of vertex assignments (i.e., (ui → upi) and (uj → upj )) in m, the partial cost costorig =
cost(ui → upi)+ cost(uj → upj ) is calculated. This cost is compared with the new mapping
cost costswap which is based on swapping the former vertex assignments (i.e., (ui → upj )
and (uj → upi)) (lines 7 and 8). In order to decide whether the new swapped mappings
are beneficial or not, a parameter θ multiplied by costorig is compared with the absolute
value of costorig-costswap (line 9). If this value is smaller than the defined threshold, the
swapping is performed, a new mapping m̄ is generated and a new distance d(m̄) is derived
(lines 10 and 11). If d(m̄) is smaller than dbest, dbest is updated and replaced by d(m̄).
Moreover, m is replaced by m̄. The steps from line 5 to 18 are repeated searching for a
better m and so dbest. The parameter swapped is used as an indicator that tells if there
were some changes that have been made when executing the two for loops. If swapped
equals true, the steps are re-executed on the new m. Once m becomes stable (i.e., when
swapped equals false), dbest and m are outputted as a best answer that can be found by
Greedy-Swap. Note that dbest is not necessarily the optimal solution since BP is based
on local search and that’s why the Greedy-Swap algorithm belongs to approximate GED
methods.

Based on the same idea of [109], a Beam-Search version of BP, called BP-Beam, is
proposed in [112]. This work focuses on investigating the influence of the order in which
the assignments are explored, such a process is considered as a post search process on the
distance quality. As in [109], the original node assignment d(m)(G1, G2) is systematically
varied by swapping (ui → vpi) and (uj → vpj ). For each swap it is verified whether (and
to what extent) the derived distance approximation stagnates, increases or decreases. For
a systematic variation of mapping m, a tree search is used. As usual, in tree-search based
methods, a set OPEN is employed that holds all of the unprocessed tree nodes. Each tree
node is a triple (m̄,q,d(m̄)(G1, G2)) where m̄ is the matching, q is its depth in the search
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Algorithm 7 Greedy-Swap (G1,G2)

Input: Non-empty attributed graphs G1 = (V1, E1, µ1, ζ1) and g2 = (V2, E2, µ2, ζ2) where
V1 = {u1, ..., u|V1|} and V2 = {v1, ..., v|V2|} and a parameter θ
Output: A minimum cost edit path (dbest) from G1 to G2

1: dbest,m = d(m)(G1,G2)
2: swapped = true
3: while swapped do
4: swapped=false
5: for i = 1...(m+ n− 1) do
6: for j = i+ 1...(m+ n) do
7: costorig = cost(ui → vpi)+ cost(uj → vpj )
8: costswap = cost(ui → vpj )+ cost(uj → vpi)
9: if —costorig − costswap| ≤ θ.costorig then

10: m̄ = m− {ui → vpi , uj → vpj} ∪ {ui → vpj , uj → vpi}
11: Derive approximate edit distance d(m̄)(G1, G2)
12: if d(m̄)(G1, G2) < dbest then
13: dbest,m = d(m̄)(G1, G2)
14: swapped = true
15: end if
16: end if
17: end for
18: end for
19: end while
20: return dbest and m
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tree and d(m̄)(G1, G2) is the distance obtained from the mapping m̄. Since BP is used as
a first step, it is considered as a first node in OPEN and thus its depth q is equal to zero.
Nodes are kept sorted in ascending order according to their depth in the search tree. As
long as OPEN is not empty, the triple (m̄,q,d(m̄)(G1, G2)) located at the first position in
OPEN is retrieved and removed from OPEN. The successors of (m̄,q,d(m̄)(G1, G2)) are
generated by swapping (ui → vpi) and (uj → vpj ) (i.e., ui → vpj ) and (uj → vpi) where
i = q and j = {(q), · · · , (|V1| + |V2|)}. These successors are inserted at the end of the
list OPEN where q = q + 1. When each successor is inserted, a systematic verification
is performed to verify whether the derived distance d(m̄)(G1, G2) is smaller than the best
distance found so far (i.e. dbest). If this is the case, dbest is modified. After successors
insertion and dbest verification, the best x solutions are kept in OPEN and the next node
is retrieved and removed and so on. The algorithm stops when OPEN becomes empty.
dbest is then outputted as a final solution of BP-Beam(G1, G2).

Recently, an iterative version of BP-Beam, referred to as IBP-Beam, has been proposed
in [45]. This algorithm starts by computing a first distance dm(G1, G2) using BP. A
randomization step is then applied to change the order of the matched vertices. Afterwards,
BP-Beam is applied on the new-ordered matching. The randomization and BP-Beam are
repeated k times. This algorithm has two parameters (x and k). Results showed that
this algorithm takes much longer time than BP-Beam. However, it improves the distance
quality.

In [113], a search procedure based on a genetic algorithm referred to as BPGA is pro-
posed for improving the accuracy ofBP . After calculating a first upper bound (m,dm(G1, G2))
using BP , an initial population P (0) is build by computing N random order variations

of m (i.e., m
(0)
1 , · · · ,m(0)

N ). Each variation m
(0)
i ∈ P (0) is computed by assigning a muta-

tion probability to each vertex-to-vertex mapping (i.e., ui → vpi). This probability tells
whether a mapping can be deleted or not. In the case of deleting a vertex-to-vertex map-
ping, an infinity cost is assigned to it (i.e., c(ui → vpi)=∞). Given this modification in

a matrix entity, a new mapping m
(0)
i and its underlying distance are generated. Note

that m
(0)
i does not contain ui → vpi anymore. As mentioned before, N mappings are

generated through mutation procedure and thus the aforementioned procedure is repeated

N times to obtain an initial population P (t) = {m(t)
1 , · · · ,m(t)

N }. Afterwards, a subset
E, called parents, of P (0) is created aiming at obtaining a second population P (t + 1).
Parents’ selection is achieved by selecting the best K approximations whose distances are
the minimum. These parents are inserted into P (t + 1) without any modification. Then,
to generate the other N − |E| mappings, the following strategy is repeated N − |E| times.
Two mappings m̄, ¯̄m ∈ E are randomly selected and combined in one mapping m where
Cm = max({ ¯ci,j , ¯̄ci,j}) where c̄ and ¯̄c are the cost matrices of m̄ and ¯̄m, respectively. Any
prevented mapping (i.e., a mapping whose cost is infinity) in m̄ and ¯̄m is also prevented in
the merged mapping m. The selection of parents E ⊆ P (t) and the generation of N − |E|
new mappings are repeated again and again. The algorithm is stopped when the best
distance has not been modified for ι iterations where ι ≤ t. Since any genetic algorithm
is non-deterministic, the computation of BPGA is repeated s times. Afterwards, the best
distance along with its matching are outputted. Thus, when comparing BPGA to BP,
BPGA increases the run time by parameters s.t.N .
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Compared to the original BP , the improvements proposed in [45, 112, 109, 113] increase
run times. However, they improve the accuracy of the BP solution.

Hausdorff Edit Distance In [49], the authors propose a novel modification of the
Hausdorff distance that takes into account not only substitution, but also deletion and
insertion cost. We refer to the modified version of the Hausdorff distance as H. This
approach allows multiple vertex assignments, consequently, the time complexity is reduced
to quadratic (i.e., O(n2)) with respect to the number of vertices of the involved graphs.

Definition 15 The Modified Hausdorff (H)

H(G1, G2) =
∑
u∈V1

min
v∈V2

c̄1(u, v) +
∑
v∈V2

min
u∈V1

c̄2(u, v) (2.11)

where V1 corresponds to the vertices of G1 and V2 to the vertices of G2. The cost
functions c̄1(u, v) and c̄2(u, v) for matching vertex u with vertex v are:

c̄1(u, v) =

{
c(u,v)

2 , if c(u, v) < c(u, ε)

c(u, ε), otherwise
(2.12)

c̄2(u, v) =

{
c(u,v)

2 , if c(u, v) < c(ε, v)

c(ε, v), otherwise
(2.13)

To compute c̄1(u, v), among all the possible substitutions c(u,v)
2 , the one with the

smallest cost is chosen. Otherwise, the deletion cost c(u, ε) is returned. The same thing

for c̄2(u, v) where the minimum substitution c(u,v)
2 is chosen. Otherwise, the insertion cost

c(ε, v) is returned (i.e., if c(u, v) > c(ε, v)).

For both c̄1(u, v) and c̄2(u, v), the estimated implied edge cost is included with each
c(u, v) as well as c(u, ε) and c(ε, v) such that:

c(i, j) = c(i, j) +
estimated implied edge cost

2

Unlike the approximate GED methods explained in this section, H(G1, G2) is a lower
bound GED method.
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2.4 Performance Evaluation of Graph Matching

In this section, a focus on the existing benchmarks for GM methods is given. Table 2.3
synthesizes the graph databases presented in the literature. One may notice that exact
GM methods have been evaluated at matching level. However, error-tolerant GM methods
have been evaluated at the classification level rather than the matching one. Yet, in the
literature, some approximate GED methods have been evaluated at the matching level
but unfortunately on graphs whose sizes are not bigger than 16 vertices [107]. One may
ask the following question: why error-tolerant GM algorithms have not been tested at
the matching level? Is it because there is really no need for that and that the only need
for error-tolerant GM methods is to classify graphs? For instance, one of the databases
repository called CMU [2] is devoted to error-tolerant GM with ground truth information.
However, graphs have the same number of vertices and thus the scalability measure cannot
be assessed. Indeed, one may clearly see that there is a lack of performance comparison
measures dedicated to the scalability of error-tolerant GM methods, whether exact or
approximate ones.

Ref Problem Type Graph Type Database
Type

Metrics Type Purpose

[118] Exact GM Non-
attributed

Synthetic Accuracy and scalabil-
ity

Matching

[2] Error-tolerant
GM

Attributed Real-world Memory consumption,
accuracy and matching
quality

Matching

[105] Error-tolerant
GM

Attributed Real-world Accuracy and running
time

Classification

[37,
52]

Exact GM Attributed Synthetic Accuracy and scalabil-
ity

Matching

[27] Exact GM (Non)attributed Real-world Scalability Matching

Table 2.3: Synthesis of graph databases

2.5 Conclusion on the State-of-the-Art Methods

After having explored GM methods in general and GED methods in particular, we
spot light and emphasize on several facts.

GED is the most flexible and generic GM problem since it can be applied on any type
of graphs by changing the cost functions of both vertices and edges. Moreover, it can be
transformed into an exact GM problem by means of metric constraints. Unlike statistical
approaches, GED methods provide both a matching and a distance of the two involved
graphs. It is also the most studied problem in the literature.

Table 2.4 synthesizes the GED methods on which we shed light in this chapter. Exact
methods have not been intensely studied in the literature. In fact, exact GED methods
are guaranteed to find the exact matching but have a run time and/or memory usage that
is exponential in the size of the input graphs, such a fact limits the exact methods to work
on relatively small graphs. For instance, A∗ has shown to be a memory consuming method
as it is based on a Best-First search algorithm.
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Method Reference Problem type Graphs type Distributed?
A* [111] Exact GED symbolic and numeric attributes NO

BLP [71] Exact GED symbolic and numeric attributes only on vertices NO
BS [98] Approximate GED symbolic and numeric attributes NO
BP [106] Approximate GED symbolic and numeric attributes NO

SWAP-BP [112] Approximate GED symbolic and numeric attributes NO
BP-Beam [109] Approximate GED symbolic and numeric attributes NO
IBP-Beam [45] Approximate GED symbolic and numeric attributes NO

BPGA [113] Approximate GED symbolic and numeric attributes NO
FBP [121] Approximate GED symbolic and numeric attributes NO

SFBP [122] Approximate GED symbolic and numeric attributes NO
H [48] Approximate GED symbolic and numeric attributes NO

Table 2.4: Synthesis of the GED methods presented in the thesis

On the other hand, approximate GED methods often have a polynomial run time
in the size of the input graphs and thus are much faster, but do not guarantee to find
the exact matching in addition to the fact that the quality of their provided answers
(i.e., distance and matching) have not been studied. In addition, approximate methods
have not been experimented on large or dense graphs. We, authors, believe that the
more complex the graphs, the larger the error committed by the approximate methods.
Graphs are generally more complex in cases where neighborhoods and attributes do not
allow to easily differentiate between vertices. In addition to the lack of diversity of graph
datasets, there is a lack in metrics for deeply evaluating error-tolerant GM methods since
only classification rates have been evaluated. For instance, resources consumption of each
method has not been deeply studied. Moreover, in GED, the impact of cost functions
always remains a question.

Based on the aforementioned facts and conclusions, we believe that it is highly impor-
tant to study and propose new solutions that can be listed as follows:

• Defining an optimized and exact GED method that can match larger graphs and
consume less memory than A∗.

• Introducing a new kind of GM methods that could adapt themselves to give a trade-
off between available resources (time and memory) and the quality of the provided
solution.

• Putting forward a distributed or a parallel version of a GED method in order to
handle larger graphs and to get more precised solutions (i.e., mappings and distance).

• Proposing new metrics and datasets with different types of graphs to better charac-
terize GED methods in terms of precision of the provided solution (i.e., instead of
only classification rates).
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Chapter 3

Toward an Anytime Graph
Matching Approach

After growing wildly for years, the field of computing appears to be reaching its infancy.

John Pierce.

Contents

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Formulating Search-Based Graph Edit Distance Algorithms
as Anytime Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Optimized Depth-first Graph Edit Distance . . . . . . . . . . . 67

3.4 Anytime Depth-First Graph Edit Distance . . . . . . . . . . . . 70

3.5 Theoretical Observations . . . . . . . . . . . . . . . . . . . . . . . 72

Abstract

As seen in the conclusion of the aforementioned chapter, there is a need for an optimized
and exact GED method. Thus, in this chapter, we propose and explain the interest of a
new GM methods family, referred to as anytime GM methods. This family allows exact
error-tolerant GM methods to be applicable in real-world applications. In this chapter, we
describe how to convert an error-tolerant GM method into an anytime one [157] that is
able to find a list of improved solutions and eventually converges to the optimal solution
instead of providing only one solution (i.e., an approximate or an optimal solution). The
approach we adopt uses a variant of an exact Depth-First search GED method to find a
first suboptimal solution quickly, and then continues the search to find improved solutions.
In addition of getting rid of memory bottleneck, this approach improves the upper bound
while exploring the search tree. When the time available to solve an optimization problem
is limited or uncertain, this creates an anytime heuristic search algorithm that allows a
flexible trade-off between search time and solution quality. With more time, the method
can improve its solution and finally reach the optimal solution.
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Figure 3.1: Adding a new family of GM approaches

3.1 Motivation

More and more sophisticated applications need to achieve huge computation tasks
within strict elapsed time limits in order to be useful. For instance, interactive systems
typically need to complete their task within a few seconds so as it would be acceptable
by users. On the other hand, powerful data structures such as attributed graphs that are
used to represent complex entities always require more and more computational resources.
Then, a trade-off between accuracy and computational cost (i.e., execution time and con-
sumed memory) has to be found and new methods such as anytime version of algorithms
have to be defined. The main idea of an anytime algorithm comes from the simple obser-
vation that there is no reason to stop an algorithm after a first solution is found, specially
when it is possible to find better solutions with the delight of more time. By continuing the
search, a sequence of improved solutions can then be found and eventually with additional
time the algorithm can even converge to an optimal solution.

In the literature, many different error-tolerant GM algorithms are available [35, 140].
However, the exact computation of GM is then restricted to small graphs or applications
where time limit is exponential in the number of vertices of the involved graphs restricting
their applicability to graphs of rather small size or to specific applications where time limit
is not a problem.

In this part of thesis, we would like to take advantage of both exact and approximate
error-tolerant GM methods by merging them together to propose a third type of GM
methods that we call ”Anytime GM ”, see Figure 3.1.

Roughly speaking, GED methods can also be categorized into two groups. First,
methods that are fast enough but that can only find one and only one feasible solution
(such as BP [106], SFBP [121]). Second, methods that are tree-search based methods
(such as BS [90]) that can provide more than only one solution while traversing the search
tree during the matching process. Thus, this last kind of GM methods (i.e., tree-based
method) becomes of great interest since computational time and even explored search space
can be manageable with the impact of the quality of the provided matching solution. From
here comes the primary motivation of the chapter saying that tree-based methods for GM
computation can be turned into anytime methods by varying the computational time and
studying the effect on the outputted answers. In this chapter, we propose the definition of
an anytime algorithm of GM based on a variant of Depth-First search GED computation
that does not consume so much memory. By managing time and memory at the same
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time, the proposed method is then as much scalable as possible.

3.2 Formulating Search-Based Graph Edit Distance Algo-
rithms as Anytime Ones

In this section, the main characteristics of anytime algorithms [157] are recalled ex-
plaining how they can respond to the constraints (i.e., time and memory).

For the reasons mentioned in Section 2.2, we shed a spot of light on the problem of
GED. For more details about GED, see Section 2.2.

As previously seen, the most famous classical technique that was used to solve the GED
problem is called A∗ [101]. A∗ is a search-tree based algorithm that updates the solution
once it finds a better one. Various heuristics based on A∗ have been studied in [84] to
allow a trade-off between solution quality and search time. The possibility of continuing a
non-admissible1 A∗ search after the first solution is found was suggested by Hansen with
an approach called bandwidth heuristic search [62]. After some years of silence, this idea
has been extended as a strategy for creating an anytime A∗ algorithm. A description of
this extension can be found in [156]. Note that the term non-admissible solution refers to
a solution that overestimates the cost of reaching the goal.

In [158], Zilberstein and Russel have defined the desirable properties of anytime algo-
rithms. These properties can be summarized as follows:

• Interruptability: after some small amount of setup time, a suboptimal solution can
be provided by stopping the algorithm at time t.

• Monotonicity: the quality of the result increases in function of computational time.

• Measurable quality: we can always measure the quality of a suboptimal result.

• Diminishing returns: at the beginning of anytime algorithms, the improvement of
solutions can be remarkably observed. However, this improvement decreases over
time.

• Preemptability: an anytime algorithm can be suspended and resumed with minimal
overhead.

Anytime algorithms have trade-off between quality and execution time, see Figure
3.2. Anytime algorithms can find a best-so-far solution which is generated after some
initialization time at the beginning of the execution. From Figure 3.2, one can see that
the quality of the solution is improved when increasing the execution time. Users have
the choice to stop the algorithm at anytime and thus get an answer that is satisfying, or
they can run the algorithm until its completion when it is important to find the optimal
solution.

The setup time (in Figure 3.2) corresponding to the time needed by an anytime algo-
rithm to get a first solution is a crucial point. This setup time has to be compared with the

1A search algorithm is described as admissible if it is able to find an optimal path or solution [99].
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Figure 3.2: Characteristics of anytime algorithms

delay requested by approximate methods that solve the same problem. Another important
point when dealing with anytime algorithms is to know when an anytime algorithm should
be interrupted (by the system or the user) to get the best-so-far answer. Thus, algorithms
should be equipped with appropriate stopping criteria based on a monitoring of actual
performances when the time of an optimal interruption is not known in advance. A study
of this specific point will be proposed in the experiments.

3.2.1 Tree-Search Methods with Time and Memory Consideration

3.2.1.1 Considering Time with Anytime Algorithms

Anytime algorithms are dedicated to problem-solving under time constraints. After a
setup time, anytime algorithms are able to provide a solution whenever they are stopped.
Then, the quality of the solution has to improve with additional computation time [158].
For difficult search problems (e.g., GED computation), A∗ and Depth-First Search DFS
may take too long time to find an optimal solution. However, a suboptimal solution that is
found relatively quickly can be useful. The most common approach to transform a search
algorithm, such as A∗, into an anytime algorithm consists in the following three changes
[62].

• A non-admissible evaluation function, lb0(n) = g(n) + h0(n), where the heuristic
h0(n) is not admissible, is used to select nodes for expansion in an order that allows
good, but possibly suboptimal, solutions to be found quickly.

• The search continues after a solution is found, in order to find improved solutions.

• An admissible evaluation function (i.e., a lower-bound function), lb(n) = g(n) +
h(n), where h(n) is admissible, is used together with an upper bound on the optimal
solution cost given by the cost of the best solution found so far, in order to prune
the search space and detect convergence to an optimal solution.

Based on this idea, many researchers have explored the effect of weighting the terms
g(n) and h(n) in the node evaluation function differently, in order to allow A∗ to find a
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bounded-optimal solution with less computational effort. In the approach called Weighted
A∗ (WA∗) [84], the node evaluation function is defined as lb0(n) = g(n) + ω*h(n), where
the weight ω > 1.0 is a parameter set by the user. If ω > 1.0, the search is not admissible
and the first solution found may not be optimal, although it is usually found much faster.
A weighted heuristic accelerates the search for a solution because it makes nodes closer
to a goal seem more attractive, giving the search a more depth-first aspect and implicitly
adjusting a trade-off between search effort and solution quality. Weighted heuristic search
is more effective for search problems with close-to-optimal solutions, and can often find a
close-to-optimal solution in a small fraction of the time it takes to find an optimal solution.
Some variations of weighted heuristic search have been studied. For example, an approach
called dynamic weighting adjusts the weight with the depth of the search [75]. Weighted
heuristic search has been used with other search algorithms besides A∗, including memory-
efficient versions of A∗ such as IDA∗ and RBFS [76], see next section, as well as Learning
Real-Time A∗ (LRTA∗) [124].

3.2.1.2 Considering Memory with Anytime Algorithms

As previously mentioned, the scalability of A∗ is limited by the memory required to
store the lists of open path inside the search tree. This also limits the scalability of Anytime
A∗ and so we have to take care of this point in the conception of our new GED algorithms
and try to create a linear-space anytime algorithm.

Considering memory aspect, DFS algorithms are very effective for some tree-search
problems since they overcome the memory bottleneck from which A∗ methods suffer. DFS
algorithms are anytime by nature [154], as they systematically explore leaf nodes of a state
space. They quickly find a solution that is suboptimal, and then continue to search for
an improved solution until an optimal solution is found. They can even use the cost of
the best solution found so far as an upper bound to prune the search space. So, the DFS
strategy seems to correspond to a simple and efficient approach for converting an exact
algorithm of GED into an anytime algorithm that offers a trade-off between search time,
memory consumption and quality of the provided solution when more time is available.

Several variants of A∗ have been developed that use less memory, including algorithms
that require only linear space in the depth of the search space. One of the most known
algorithms is Recursive Best-First Search (RBFS ) [76]. RBFS is a general heuristic search
algorithm that expands frontier nodes in best-first order, but saves memory by determining
the next node to expand using stack-based backtracking instead of by selecting nodes from
an Open list.

At a first glance, RBFS looks similar to a recursive implementation of DFS. However,
it differs from DFS since the nodes are branched in a best-first way by using a special
backtracking condition. The complete path to the current node being branched is main-
tained on the recursion stack as well as all siblings of each node on this path. A tracking
of the f=g+h cost of the best alternative available path is kept from any ancestor of the
current node, which is passed as an argument to the recursive function. The arguments
of RBFS are a node n to be explored and a bound B that is the best so-far f value of
an unexplored node n2 that has the same parent as the node n. As in Weighted A∗ algo-
rithms, a pruning stage happens when the f -cost of the children of n is greater than or
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equal to B. When pruning a branch, backtracking to the parent n is performed and so a
best-first exploration is conducted to expand the new promising node. RBFS determines
whether a child node is being visited for the first time or not. By doing such an action,
the backtracking of already visited branches is avoided.

Based on the aforementioned remarks, we have defined an efficient optimized Anytime
GM algorithm that avoids high memory consumption. The proposed algorithm is described
in this chapter starting with the description of an optimized version of a depth-first search
algorithm. Thereafter, this algorithm is reformulated as an anytime one that is able to
provide successive improved solutions according to available time.

3.3 Optimized Depth-first Graph Edit Distance

To overcome the bottleneck of A∗, we propose a novel algorithm that reduces the used
memory space using a different exploration strategy (i.e., depth-first instead of best-first).
This approach also reduces the computation time as the unfruitful nodes are pruned by
a lower and upper bounds strategy. A preprocessing strategy is included to avoid the re-
computation of vertices and nodes matching costs. Edges and vertices costs matrices are
constructed during an initialization step and the list V1 is sorted to speed up the search
for the best edit path to be explored.

The elements of the depth-first GED (DF ) algorithm are described in Sections 3.3.1
to 3.3.5. Moreover, a pseudo-code is presented in Section 3.3.6.

3.3.1 Structure of Search-Tree Nodes

DF is a tree-search based algorithm in which each node corresponds to a matching
state in the GM problem. Figure 3.3 illustrates an example of a tree node or so-called
partial edit path.

a 

b c d 

e f 

g(a)=0 
h(a)=4 
lb(a)=4 

g(d)=4 
h(d)=4 
lb(d)=8 

g(c)=2 
h(c)=1 
lb(c)=3 

g(b)=2 
h(b)=2 
lb(b)=4 

g(e)=5 
h(e)=1 
lb(e)=6 

g(f)=4 
h(f)=1 
lb(f)=5 

Figure 3.3: An example of a partial edit path p whose explored nodes so far are a, c and
f . lb(∗) = g(∗) + h(∗)

Each tree node p, in the search tree, is then identified by the following elements:

• matchedVertices(p) and matchedEdges(p): the vertices and edges that have been
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matched so far in both G1 and G2. These sets can contain substitution (u → v),
deletion (u→ ε) and/or insertion (ε→ v) of vertices and edges, correspondingly.

• pendingVi(p) and pendingEi(p) with i ∈ {1, 2}: these sets represent vertices and
edges of both G1 and G2 (i.e., V1, V2, E1 and E2) that are not substituted, deleted or
inserted yet where pendingV1(p) and pendingV2(p) represent pending V1 and pending
V2, respectively whereas pendingE1(p) and pendingE2(p) represent pending E1 and
pending E2, respectively.

• children(p): for any node p, the exploration is achieved by choosing the next most
promising vertex ui of pending-vertices1(p) and matching it with all the elements
of pending-vertices2(p) in addition to the deletion of this node (i.e., ui → ε). All
these mappings are referred to as children(p).

• h(p): the estimated future cost from node p does not overestimate the complete
solution. The calculation of the lower bound is described in Section 2.3.1.1.

• g(p): the cost of matched-vertices(p) and matched-edges(p). Both h and g depend
on the attributes as well as the structure of the involved sub-trees. The cost functions
involved with each dataset permit to calculate insertions, deletions and substitutions
of vertices and/or edges.

3.3.2 Preprocessing

Before starting the Branch-and-Bound (BnB) part, important data structures have to
be initialized to speed up the tree search exploration. Preprocessing includes two steps:
cost matrices construction and vertices-sorting strategy.

3.3.2.1 Cost Matrices

The vertices and edges cost matrices (Cv and Ce) are constructed, respectively. This
step aims at speeding up branch-and-bound by getting rid of re-calculating the assigned
costs when matching vertices and edges of G1 and G2.

Let G1 =(V1,E1,LV1 ,LE1 ,µ1,ζ1) and G2 =(V2,E2,LV2 ,LE2 ,µ2,ζ2 be two graphs with
V1 = (u1, ..., un) and V2 = (v1, ..., vm). A vertices cost matrix Cv, whose dimension is
(n+ 2) X (m+ 2), is constructed as follows:

Cv =

c1,1 ... ... c1,m c1←ε c1→ε
... ... ... ... ... ...
... ... ... ... ... ...
cn,1 ... ... cn,m cn←ε cn→ε

cε→1 ... ... cε→m ∞ ∞
cε←1 ... ... cε←m ∞ ∞

where n is the number of vertices of G1 and m is the number of vertices of G2 .

Each element ci,j in the matrix Cv corresponds to the cost of assigning the ith vertex
of the graph G1 to the jth vertex of the graph G2. The left upper corner of the matrix
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contains all possible node substitutions while the right upper corner represents the cost
of all possible vertices insertions and deletions of vertices of G1, respectively. The left
bottom corner contains all possible vertices insertions and deletions of vertices of G2,
respectively whereas the bottom right corner elements cost is set to infinity which concerns
the substitution of ε− ε.

Similarly, Ce contains all the possible substitutions, deletions and insertions of edges
of G1 and G2. Ce is constructed in the very same way as Cv.

3.3.2.2 Vertices-Sorting Strategy

As GED aims at transforming G1 into G2, it is important to sort V1 in order to start
with the most promising vertices that will speed up the exploration of the search tree
while searching for the exact GED. Cv is used as an input of the vertices-sorting phase.
First, BP is applied to establish the initial edit path EP which can be used as a first
upper bound [106]. Second, the edit operations of EP are sorted in ascending order of the
matching cost where sortedEP = {u → v} ∀u ∈ V1 ∪ {ε}. At last, from sortedEP, each
u ∈ V1 is inserted in sortedV1.

After these preprocessing steps the tree exploration can start.

3.3.3 Branching and Selection Strategies

The solution space is organized as an ordered tree which is explored in a depth-first
way. In depth-first search, each node is visited just before its children. In other words,
when traversing the search tree, one should travel as deep as possible from node i to node
j before backtracking. The exploration starts with the root node and so the first most
promising vertex u1 in the sortedV1 set and will generate some edit paths by matching u1

with all vertices of G2 in addition to deleting u1 (i.e., u1 → ε); note that each edit path
has its own structure. This step constructs the first level in the search tree (i.e., the root’s
children). For any node p, in the search tree, the children are sorted in an ascendant way
according to lb(q) of each child node q. These children are then added to OPEN. Since the
children are ascendantly sorted, the exploration is achieved by choosing the first element in
OPEN, which represents the next most promising vertex ui of pendingV1(p) and matching
it with all pendingV2(p) in addition to the deletion option (i.e., p→ ε) and so on. And so,
each node is visited just before its children.

3.3.4 Reduction Strategy

Pruning, or bounding, is achieved thanks to h(p), g(p) and a global upper bound UB
obtained at node leaves. Formally, for a node p in the search tree, lb is taken into account
and compared to UB. That is, if g(p)+h(p) is less than UB then p can be explored.
Otherwise, the encountered p will be removed from OPEN and the next promising node
is evaluated and so on until finding the best UB that represents the optimal solution of
DF. This algorithms differs from A∗ as at any time t, in the worst case, OPEN contains
at most |V1|.|V2| tree nodes and hence the memory consumption is not exhausted.
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3.3.5 Upper and Lower Bounds

As mentioned before, an initial upper bound edit path UB and its cost UBCOST
can be computed by BP or remained unset. This choice can be seen as a parameter.
Afterwards and while traversing the search tree, UB is replaced by the best UB found
so far (i.e., a complete path whose cost is less than the current UB). After finishing the
traversal of the search tree (i.e., when OPEN equals Φ ), the best UB is outputted as
an optimal solution of DF. Encountering upper bounds when performing a depth-first
traversal efficiently prunes the search space and thus helps in finding the optimal solution
faster than A∗.

As for the lower bound lb(p) = g(p)+h(p), several ones are proposed in Section 5.3.3.1
and the best one is used for the rest of the experiments.

3.3.6 Pseudo Code

As depicted in Algorithm 8, DF starts by a preprocessing step (lines 3 to 6), then
an upper bound UB along with its distance UBCOST are calculated by BP or set to
∞ (line 5). The traversal of the search tree starts by generating the root’s children (line
7). Algorithm 9 illustrates how children(p) are generated. The most promising vertex u1

is popped up from sortedV1 (line 1). Consequently, vertex u1 is substituted with all the
vertices in pendingV2(p) (line 3). Each of the mappings is added to a list Listp. In addition
to substitutions, the deletion of u1 (i.e., u1 → ε) is added to Listq (lines 6 and 7). Thus,
Listp contains the children of p. Back to Algorithm 8, Listp is sorted in an ascending order
and inserted in OPEN (lines 8 to 11). Since each child inserted in OPEN are ordered,
the most promising child p will be first selected (line 13). Then the children of p are
generated and sorted as mentioned above (lines 14 and 25). If ListP is empty, then each
vi ∈ V1 is either substituted or deleted. Consequently, if PendingV2(p) is not empty, each
vi ∈ PendingV2(p) will be inserted in p (lines 16 to 19). UB and UBCOST are updated
whenever a better solution is encountered (lines 20 to 23). This algorithm guarantees to
find the optimal solution of GED(G1, G2). The edge operations are taken into account in
the matching process when substituting, deleting or inserting their corresponding vertices,
see Figure 2.8.

3.4 Anytime Depth-First Graph Edit Distance

This section describes how we convert the previous algorithm into an anytime one
that can produce an instant matching and dissimilarity measure between two graphs,
or if given the luxury of additional time, can increase precision of this matching and
dissimilarity measure. After the anytime algorithm finds a first solution, and each time it
finds an improved solution, it saves (or outputs) the solution and continues the search. We
convert DF into an anytime one while respecting the anytime properties. As in DF, the
anytime version contains the preprocessing step (see Section 3.3.2), the reduction strategy
(Section 3.3.4), the selection and branching strategy 3.3.3 as well as the lower and upper
bounds (see Section 3.3.5). However, the anytime version of GED differs in the sense of
exporting the complete edit paths along with their distances while exploring the search
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Algorithm 8 Depth First GED algorithm (DF)

Input: Non-empty attributed graphs G1 = (V1, E1, µ1, ζ1)) and G2 = (V2, E2, µ2, ζ2) where
V1 = {u1, ..., u|v1|}, V2 = {u2, ..., u|v2|}, µ and ζ are the attributes associated with vertices
and edges respectively.
Output UBCOST = a minimum cost edit path from g1 to g2 & UB = sequence of edit
operations.

1: p← root node of the tree with all vertices and edges of G1 and G2 as pending lists
2: OPEN ← Φ, UB ← φ, UBCOST ←∞
3: Generate Cv, Ce
4: Optional: . Steps below are optional
5: (UB , UBCOST ) ← BP (G1, G2)
6: sortedV1 ← sortVerticesV1(V1,V2) . in ascending order of BP (G1, G2)
7: Listp ← GenerateChildren(p,Cv,Ce,sortedV1(p),pendingV2(p))
8: Listp ← SortAscending(Listp) . according to g(p)+h(p)
9: for p ∈ Listp do

10: OPEN .AddFirst(p)
11: end for
12: while OPEN != Φ do
13: p ← OPEN .popFirst() . Take first element and remove it from OPEN
14: Listp ← GenerateChildren(p)
15: if Listp = Φ then
16: for vi ∈ pendingV2(p) do
17: q ← insertion(ε , vi) . i.e., {ε→ vi}
18: p.AddFirst(q)
19: end for
20: if g(p) < UBCOST then
21: UBCOST ← g(p), UB ← p
22: end if
23: else
24: Listp ← SortAscending(Listp) . according to g(p)+h(p)
25: for q ∈ Listp do
26: if g(q) + h(q) < UB then
27: OPEN .AddFirst(q)
28: end if
29: end for
30: end if
31: end while
32: Return(UBCOST , UB) . export final results
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Algorithm 9 GenerateChildren

Input: a tree node p, the vertices and the edges matrices (Cv and Ce), sortedV1(p) and
pendingV2(p).
Output: a list Listp whose elements are the children of p.

1: u1 ← sortedV1.popFirst(p)
2: for vi ∈ pendingV2(p) do
3: q ← substitution(u1 , vi) . i.e., {u1 → vi}
4: Listp.AddFirst(q) . q is a tree node
5: end for
6: q ← deletion(u1) . i.e., {u1 → ε}
7: Listp.AddFirst(q)
8: Return(Listp)

tree. Moreover, it also has a capability to be interrupted at approximately anytime t.
Such a fact keeps the output accessible at anytime.

3.4.1 Pseudo code

As one may see through Algorithm 10, the steps of AnyTime DF (ADF), referred to as
ADF, resemble DF . However, two additional lines are added to the pseudo code (see lines
6 and 23). Moreover, a time-out and memory-out interruptions are added. By adding lines
3 and 23, the algorithm is able to keep tracking the solutions found while exploring the
search tree. The first complete solution found by BP is first exported (line 4). Afterwards,
when exploring the search tree and finding a solution that is better than the upper bound
found so far, an exportation of the new upper bound is done (line 23). Note that the
output is available at anytime after the setup time (line 5). As long as the time and
memory are not violated and there are nodes to explore in OPEN, the exploration step
continues (line 13). As in DF , the edge operations are taken into account in the matching
process when substituting, deleting or inserting their corresponding vertices.

3.5 Theoretical Observations

DF and so its anytime version (ADF ) speed up the computations of GED for two
reasons. First, the upper and lower bounds strategy which reduces the search tree size
as one may get rid of exploring unfruitful nodes. Second, the preprocessing step which
helps in starting by the most promising vertices in G1 in addition to getting rid of the
recalculation of both vertex-to-vertex and edge-to-edge mappings. Unlike A∗, DF does
not exhaust memory as the number of pending edit paths that are stored in the set OPEN
is |V1|.|V2| in the worst case.

Anytime DF guarantees to find the optimal solution of GED(G1, G2) if no time limit
is set. It also provides better and better solutions and guarantees to find the optimal
solution if enough time is available.

However, one should also be aware of the drawback that DF and its anytime version
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Algorithm 10 The Anytime Version of Depth First GED algorithm (ADF)

Input: Non-empty attributed graphs G1 = (V1, E1, µ1, ζ1)) and G2 = (V2, E2, µ2, ζ2) where
V1 = {u1, ..., u|v1|}, V2 = {u2, ..., u|v2|}, µ and ζ are the attributes associated with vertices
and edges respectively.
Output accessible at anytime: UBCOST = a minimum cost edit path from g1 to g2
& UB = sequence of edit operations.

1: p← root node of the tree with all vertices and edges of G1 and G2 as pending lists
2: OPEN ← Φ, UB ← φ, UBCOST ←∞
3: Generate Cv, Ce
4: Optional: . Steps below are optional
5: (UB , UBCOST ) ← BP (G1, G2)
6: Export UBCOST and UB
7: sortedV1 ← sortVerticesV1(V1,V2) . in ascending order of BP (G1, G2)
8: Listp ← GenerateChildren(p,Cv,Ce,sortedV1(p),pendingV2(p))
9: Listp ← SortAscending(Listp) . according to g(p)+h(p)

10: for p ∈ Listp do
11: OPEN .AddFirst(p)
12: end for
13: while OPEN != Φ & TimeOut != TRUE & MemoryOut != TRUE do
14: p ← OPEN .popFirst() . Take first element and remove it from OPEN
15: Listp ← GenerateChildren(p)
16: if Listp = Φ then
17: for vi ∈ pendingV2(p) do
18: q ← insertion(ε , vi) . i.e., {ε→ vi}
19: p.AddFirst(q)
20: end for
21: if g(p) < UBCOST then
22: UBCOST ← g(p), UB ← p
23: Export UBCOST and UB
24: end if
25: else
26: Listp ← SortAscending(Listp) . according to g(p)+h(p)
27: for q ∈ Listp do
28: if g(q) + h(q) < UB then
29: OPEN .AddFirst(q)
30: end if
31: end for
32: end if
33: end while
34: Return(UBCOST , UB) . export final results
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have which lies in exploring a part of the search tree for a long time. The solutions found
while exploring this part of the tree look good locally but are tremendously less favorable
when compared to other solutions in other parts of the search tree. Since DF and ADF
are depth-first algorithms, it takes time to take steps backward specially if the error is
made in a very early stage during the matching process.
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Chapter 4

Parallel and Distributed
Approaches for Graph Edit
Distance

Life is not accumulation, it is about contribution. Stephen Covey
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Abstract

In the aforementioned chapter, an optimized Branch-and-Bound GED algorithm was
proposed (i.e DF ). This algorithm works well on relatively small graphs. To optimize it
more and thus scale up to match larger graphs, one may think of a parallel exploration
of the search tree. To the best of our knowledge, parallel GED methods have never been
proposed in the literature. Thus, in this chapter, we first report approaches that have been
proposed in the literature to solve BnB in a fully parallel or distributed manner. Then, in
the rest of this chapter, we propose a parallel and a distributed exact GED algorithms.

4.1 Parallel Computing versus Distributed Computing

In both parallel and distributed computings, a big task is partitioned into small sub-
tasks each of which may have a different unit. In parallel systems, these units are referred
to as threads while they are referred to as processes in distributed systems depends on
whether or not these units have a shared memory.
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In parallel computing, threads may have access to a shared-memory to exchange in-
formation between them. The variables, objects, and data structures in that environment
are accessible to all threads. In a shared memory model, different threads may execute
different statements, but any statement can affect the shared environment.

Distributed computing often assumes autonomous computing agents; each process has
its own private memory. Information is exchanged by passing input/output (I/O) mes-
sages between threads. In 1985, Andrew Tanenbaum and Robert van Renesse offered the
following definition for an operating system controlling a distributed environment [133]:

A distributed operating system is one that looks to its users like an ordinary centralized

operating system but runs on multiple, independent central processing units (CPUs).

There are two predominant ways of organizing computers in a distributed system:

• The client-server architecture [127] which consists of a system, called server, that
delivers and manages most of the resources and several systems, called clients, who
consumes these resources. The server handles multiple clients at the same time. It
also dispatches work to clients and/or waits a request from clients. Neither the server
nor clients share their resources with each other.

• The peer-to-peer architecture (P2P) [119] differs from the client-server architecture
in the sense that peers, or participants, share a part of their own resources without
going through a separate server. Such an architecture is necessary in file sharing
applications. These shared parts are accessible by all peers directly since all of them
have the same capabilities and responsibilities.

There are different design options dedicated to construct a distributed or a parallel
computer system. Flynn [51] proposed a famous processing taxonmy which depends on
the data and the operations applied on this data:

• Single Instruction Single Data Stream (SISD): This term refers to a com-
puter architecture in which a single processor executes a single instruction stream
to control the functioning of data stored in a single memory. This is the case of sin-
gle thread. Older generation mainframes, minicomputers and workstations employ
SISD instruction and data streams.

• Single Instruction Multiple Data Stream (SIMD): A local memory is assigned
to each thread, and a portion of data is given to each thread. All the threads execute
the same instruction on their own portions of data. Example of such applications:
graphics processing, video compression, medical image analysis, etc. Moreover, most
modern computers, particularly those with graphics thread units (GPUs) employ
SIMD instructions and execution units.

• Multiple Instruction Single Data Stream (MISD): This term refers to par-
allel threads that are given multiple instructions which are executed on different
portions of data. Carnegie-Mellon C.mmp computer (1971) is one of the few parallel
computers which employ MISD instruction and data streams.

76



4.1. PARALLEL COMPUTING VERSUS DISTRIBUTED COMPUTING

• Multiple Instruction Multiple Data Stream (MIMD): Each thread runs its
different data and its different instructions. As an example of this design, we mention
multicore threads and multi-threaded processes.

A subcategory of MIMD is called Single Program Multiple Data Stream (SPMD)
[9]. SPMD executes copies of the same program.

Our interest in this chapter is to propose a parallel and a distributed extension of
our algorithm DF to be able to match large graphs. One of the best computing designs
that suits DF is SIMD where a portion of the data (i.e., sub-search tree) is given to each
thread/process and all threads execute the proposed method on their associated sub-search
trees.

Both parallel and distributed computings can have the simultaneous execution of the
same task on multiple threads/processes in order to obtain faster results. Figure 4.1 gives
an idea about the parallel computing techniques (POSIX threads (PThreads) [25], Open
Multi-Processing (OpenMP) [31, 1] and CUDA GPUs [100]) and the distributed models
(Message Passing Interface (MPI) [102], Unified Parallel C (UPC) [138], Fortress [5] and
MapReduce [40]) based on their architecture. Note that MPI, UPC and Fortress can be
configured to work on a single machine with shared memory or on multi-machines where
each process has its own separate memory.

We synthesize the aforementioned techniques taking into account these following cri-
teria:

• Architecture: Parallel or distributed computing architecture.

• Communication method: The communication way between threads (e.g., shared
memory, network, files system, etc.).

• Fault Tolerance: Is the parallel method able to continue its intended operation
without failing completely when partial failure happens?

• Scalability: The capability of a system or a process to handle a growing amount
of work (e.g., larger datasets) or to be easily expanded or upgraded, when required,
to accommodate that amount of work by adding more machines to the distributed
system.

• Compute-Intensive versus Data-Intensive: Parallel and distributed computing
models can be generally classified as either compute-intensive, or data-intensive.

– Compute-intensive approach: is used to describe application programs that
have a high computational complexity. Such applications devote most of their
execution time to computational requirements as opposed to I/O, and typically
require small volumes of data.

– Data-Intensive approach: processing large volumes of data typically ter-
abytes or petabytes in size and typically referred to as Big Data [32].

• Easiness to program: is it easy for a user/programmer to write a parallel/distributed
code using the model X?
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Figure 4.1: Parallel and distributed computing models and their supported system archi-
tecture (taken from [128])

Table 4.1 depicts a synthesis of the SPMD models. When taking a look at parallel
models (i.e., threads and CUDA GPUs), we see that threads are easier to handle since all
threads share the same CPU memory. Despite the fact that CUDA GPUs share memory,
they need GPU-CPU memory transfer and that turns GPU programs to be hard to man-
age. On the side of distributed models, Hadoop MapReduce has an advantage over MPI.
In Hadoop MapReduce, if one node, or thread, fails, a master program selects another
free node to do its task. MPI when it faces such a problem, it needs to re-execute all the
processes if such a problem happens.

If the problem is affordable (i.e., can be solved in one machine), it is much faster for a
model to have one machine and to spread/send information between the CPUs locally with
a shared memory rather than distributing the work between several machines. However, for
a system to be scalable, it is more powerful to have a fully distributed parallel computing
model.

For a detailed survey on the synthesis of parallel and distributed computing models
based on more criteria, we kindly refer the interested reader to [128].

4.2 Parallel and Distributed Branch and Bound Approaches

To cope with the inherent complexity of GED, the use of parallel or disributed com-
puting is argued. However, the parallel execution of a combinatorial optimization problem
is not trivial. The main questions to be answered when trying to build/propose a parallel
or a distributed version of a GED algorithm appear to us as follows:
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Characteristics Threads
and OPEN-
MP

GPU MPI, UPC and
Fortress

Hadoop
MapReduce

Architecture Parallel Parallel Distributed Distributed
Communication
Method

Memory Memory +
PCI Express
bus between
CPU and
GPU

network Distributed File
System

Fault Tolerance Stopping the
execution
of the pro-
gram and
re-executing
all the jobs

Stopping the
execution
of the pro-
gram and
re-executing
all the jobs

Stopping the
execution of the
program and
re-executing all
the jobs

Thread failure:
another thread
re-executes its
job

Data-Intensive
or Compute-
intensive

Compute-
intensive

Data-
intensive
and recently
it has also
become
compute-
intensive

Compute-
intensive and
data-intensive
can be in parallel

Data-intensive

Scalability −− −− ++ ++
Easiness to
Program

− −− ++ ++

Table 4.1: SPMD models.

1. What should be parallelized? what is time consuming? h(p), g(p), edge operations
or tree node exploration?

2. How many subtask(s) should be associated to each thread?

3. What is the estimated time per subtask?

4. What is the needed memory per subtask?

5. What is the number of CPUs (in case of the parallel approach) and/or machines (in
case of the distributed approach) that are needed?

6. When does the parallelism, or distribution start? In other words, how many subtasks
one may need to generate before the parallelism or distribution starts?

7. How to efficiently distribute the search tree nodes of the irregular search tree among
a large set of threads? 1

8. How to keep all threads busy?

9. How and when to update Upper Bound if it is upgraded?

Since DF is a BnB algorithm, the aforementioned raised questions will be answered
after exploring the state-of-art methods dedicated to solving BnB. Processing the search
tree in parallel and distributed fashion has been studied for decades [134, 56]. In this
section we shed spot of light on parallel BnB (in Section 4.2.1) and distributed BnB (in
Section 4.2.2). Then, in Section 4.2.3, we synthesize all of these works.

1Irregular search tree indicates that the number of children of each node differs from the others because
of the pruning strategy. Therefore, the depth of a sub-tree is different than the depth of the other sub-trees.
This is known as the irregularity of branch-and-bound problems [56].
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4.2.1 Parallel Branch-and-Bound Approaches

In [103], a master-slave parallel formulation of depth-first search for solving the 15-
puzzle problem [99] was proposed on plenty of parallel architectures. Each thread takes a
disjoint part of the search space. Once a thread finishes its assigned part, a donor thread
gives some unexplored nodes of the search space to this requester thread. To split the work
between the donor and the requester threads, the half-split strategy was adopted. The
selection of such a strategy was based on the work of [78] where different splitting strategies
have been analysed. As stated in [78], half-split leads to an overall high efficiency for the
shared-memory architecture. The selection of nodes to be donated was also discussed in
the paper. Figure 4.2 shows a search tree that was partially explored. The nodes selection
depends on the nature of the search space (whether it is a regular or a non-regular one).
Under the formulation of [103], the scalability of different architerctures was evaluated and
the most scalable load balancing schemes were determined in [79]. In [103], the number of
threads, the size of the problem and the speed are mentioned. However, the initial number
of nodes to be generated before parallelism starts is not defined.

Figure 4.2: A search tree that is partially explored and stopped to be splitted. Note that
the nodes ”+” are the ones that can be given to threads (i.e., requesters)

Chakroun et al in [28] have been put forward a template that transforms the unpre-
dictable and irregular workload associated to the explored BnB tree into regular data-
parallel kernels 2 optimized for the single instruction multi-data based execution model of
GPUs. At first, the pool of sub-problems is selected from the tree and off-loaded to the
GPU where the branching operator is applied. Each thread only generates one child of
its parent node according to its unique identifier. Apart from the pool of parent nodes,
a pool containing the number of children of each parent node is registered. A second
kernel is then in charge of parallel evaluation of g(p) + h(p) as well as parallel elimination
of unpromising branches thanks to UBCOST. Besides equivalent operations, the pruning
operator on top of GPU reduces the time of transferring the resulting pool from the GPU

2Kernels are functions that are executed N times in parallel by N CUDA GPUs threads.
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to the CPU since the non-promising generated sub-problems are kept in the GPU memory
and deleted there. This approach has been tested on the Flow-Shop scheduling problem
[132] on 20 machines, each of which has GPU card which contains 480 CUDA cores (15
multiprocessors with 32 cores each). In fact, this approach solved the irregularity of BnB
however it makes the explorations take longer time since in the first kernel each machine
generates only one child at each time while the second kernel eliminates branches.

A producer-consumer hybrid depth-first/best-first was proposed to solve the Flow-Shop
problem [33]. The master thread keeps generating the tree nodes at a predetermined level
(i.e., level i) and saves them to a work pool. Then, each worker threads takes a node
with the minimum lower bound lb(p) from the pool and explores it in a depth-first way.
Generating and exploring nodes are repeated until finding the solution of the problem.
Synchronization between the master and the workers is implemented with semaphores,
especially for the work pool management. The master thread has to stop generating
candidate nodes if no more free slot is available in the pool. A similar situation occurs for
an idle worker, it has to wait if the pool is empty (i.e., no item is available). Experiments
were conducted on a 16-core multithread. Results showed that the execution time is
proportional to the number of explored nodes of the flow-shop problem. That is, the
smaller the number of explored nodes, the less the execution time. Moreover, increasing
the pool size (i.e., the list where generated nodes are saved) at level i can significantly
improve the performance. Results also showed that increasing the number of threads can
reduce the execution time. This model is interesting since it takes advantage of both
breadth-first and depth-first algorithms. However, when the master generates all nodes
up to a level i, it may generate some misleading nodes (i.e., nodes that do not lead to the
optimal solution).

A dynamic work-stealing 3 depth eager scheduling method for solving Traveling Sales-
man Problem was proposed in [96]. In the beginning, a depth parameter is set to 2, which
means all the nodes whose level in the search space is 2 are considered atomic and are
processed by threads with no further subdivision. Then each thread works on its asso-
ciated problems. Threads are organized in a tree. When a thread runs out of work it
requests work from some threads that it knows (i.e., first from its children, if any, and, if
that fails, from its parent.). This balances the computational load as long as the number
of tasks per thread is high. When a thread finds a better solution, it propagates it to its
entire tree of threads. Experiments were conducted on a 1152-processor machine. Results
showed that the average time per task decreases by over 50% when the dynamic depth
increment is changed from 1 to 2 which is the desired effect of splitting large atomic tasks.
They have also studied the effect of speed-up when increasing the number of threads (64
threads, 256 threads, 512 threads, and 1024 threads). The communication of this approach
is asynchronous 4, and thus threads only communicate if they succeed in updating the up-
per bound. An eager scheduling approach is used to make the tasks somehow balanced
depending on the difficulty of each branch, this scheduling is presented in [26]. However,
the propagation of the upper bound takes time and the search tree may not be pruned as

3Work-stealing refers to the case when a thread runs out of work it requests, or steals, work from another
thread that is not idle.

4Asynchronous communication indicates that no thread waits another thread to finish in order to start
its new task [15].
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soon as possible since the propagation is done in an asynchronous way.

An OPEN-MP approach has been put forward in [42]. The proposed approach ad-
dressed the Knapsack Problem [92]. T threads are created and established by the master
program. Moreover, the master program generates tree nodes and put them in a queue.
Then, T tree nodes are removed from the queue and assigned to each thread. Each thread
only takes one node, generates its children and at the end of its exploration inserts the
children in the shared list. The best solution found so far must be modified carefully
where only one thread can change it at any time. The same thing is done when a thread
tries to insert a new tree nodes in the global shared queue. Such a model slows down the
exploration of the search tree because of the access to the critical region by all threads at
each iteration.

A parallel BnB approach dedicated to solving the problem of the maximum labeled
clique was proposed in [93]. Two parallelism levels are used: Bit and Thread parallelisms.
A bitset encoding for SIMD-like parallelism is used to represent the graph and so its ver-
tices. For thread parallelism, the recursive part of the sequential algorithm is transformed
into tree-like form. A first level in the search tree is constructed where each tree node
represents a vertex in the graph to be expanded. These tasks (i.e., expanding vertices) are
placed on queue. Each thread takes one task to solve. When the queue becomes empty,
the idle thread can steal work from other threads. A single shared variable (i.e., incum-
bent), is updated carefully by threads using an atomic. This approach was compared to a
sequential approach proposed in the same paper and another mathematical programming
approach proposed by Carrabs et al [120]. The parallel approach was always faster than
the mathematical programming one sometimes by four or five orders of magnitude. More-
over, the parallel approach always outperformed the sequential approach on both trivial
and non-trivial instances.

In [4], a breadth-first/depth-first algorithm for solving inexact subgraph matching was
proposed. This algorithm aims at solving subgraph isomorphism. At each iteration, each
thread takes a node from its queue to be solved by expanding it in a depth-first search
way until its branch is explored, updating the local best permutation and the correspond-
ing degree of mismatch and eliminating test. Afterwards, a global permutation with its
corresponding degree of mismatch is updated and given to all threads when all of them
finish solving their chosen nodes or problems, then, a next node is chosen by each thread.
A thread becomes inactive when it has no node left in its local queue. Load balancing is
performed if the number of inactive threads with empty queues is above a threshold T .
This algorithm is iterative and so each thread explores its node until reaching a leaf node.
Therefore, some threads may be idle for a certain amount of time waiting the others to
finish their exploration in order to start the next iteration. Moreover, the best permuta-
tion and the best degree of match are only updated at the end of each iteration, such a
fact will not prune the search space as fast as possible.

4.2.2 Distributed Branch-and-Bound Approaches

In [12], a one-iteration MPI approach was proposed for three phase electrical dis-
tributed networks. In the beginning, a specific number of nodes are generated by the
master process. When this number is reached, no more nodes could be generated. The
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master then gives, or sends, a node to each slave. Then, each slave starts the exploration
of the search tree in a depth-first way. Once a slave finds a better upper bound, it sends
to the master that updates all slaves. Once a slave finishes its exploration of its assigned
node, it sends a message to the master asking for a new node and process continues.
The drawback of such an approach is that once all the nodes generated by the master are
given to all threads, some threads might become idle because they finished their associated
nodes. Such a fact does not allow this approach to use all its resources at each time.

In addition to the parallel approach that was proposed in [42] (see Section 4.2.1), an
MPI approach for BnB was also introduced. This work is similar to [12]. However, the
way of exploring the tree is left to the user so one can choose either depth-first, a best-first
or a breadth-first.

A generic library, referred to as DryadOpt, has been put forward in [20] for distributed
BnB. This library is implemented on top of DryadLINQ [151], a distributed data-parallel
execution engine similar to Hadoop and Map-Reduce. Two standard ways are used to
explore the search tree (breadth-first and depth-first). In the beginning, T nodes are gen-
erated by DryadOpt in a breadth-first way. Then, these nodes are divided randomly into N
parts, where N represents the number of machines. Each machine explores its associated
part in a depth-first way. As in Hadoop, DryadLINQ has a restrictive communication and
so threads that belong to different machines cannot communicate. In order to overcome
that, a budget time ti is set per machine. All machines have a similar budget time. Once
they exceed it, they stop their exploration. Then the resulting work of all machines is
merged, divided into K parts and distributed again randomly to all machines in order to
start a new round and so on. The algorithm ends when finishing the exploration of all
nodes. Thus, the number of rounds, or iterations, cannot be known except at run time.
DryadOpt is not deterministic. If, for example, in the first round data corruption occurs
after having been associated to a machine, DryadOpt must re-execute the computation
in order to have N parts and thus give a new copy of the data to the machine. How-
ever, DryadOpt will not be able to give the same data to the machine. To this end, a
non-determinism may occur. Moreover, the upper bound cannot be shared except at the
end of each round. Such a fact will not let machines prune their search trees as soon as
possible.

4.2.3 Discussion

In this section, a synthesis is made to better understand the aforementioned parallel
and distributed BnB methods. To achieve such a synthesis, the following criteria are taken
into account:

• Thread/process Tasks: The type of tasks that was associated to each thread/process
(e.g., a sub-tree or a branch exploration, children generation, etc.).

• Tasks synchronization: The term synchronous tasks refers to threads that cannot
take a next task to execute until waiting the other threads to finish their execution.
In other words, all threads have to start handling the new task at the same time.
On the other hand, in asynchronous tasks, when a thread finishes its assigned task,
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it saves its current state and takes the next task to be executed without waiting the
other threads.

• Massively Parallel: The term massive parallel refers to phases without (a lot or
any) communication. Since communication is costly, a massively parallel approach
is the one that does not need so much communication.

• Number of threads/processes: The maximum number of threads/processes that
still provides good speedup and on which the algorithm was tested.

• Addressed Problem: The type of problem addressed by each paper.

Table 4.2 shows that no method was dedicated to solving GED. In fact, even if [4]
has tackled subgraph error-tolerant GM problem, it did not take attributes into account.
Moreover, the search tree is not pruned as soon as possible since it is based on a syn-
chronous communication, see Section 4.2.2.

The approaches in [103], [33] and [96] are of great interest since the communication
is asynchronous and thus there is no need to stop a thread if it did not finish its tasks,
unless another thread ran out of tasks as in [103] and [96]. In [33], however, work stealing
is not integrated. Thus, when there are no more problems to be generated by the master
thread, some threads might become idle for a certain amount of time while waiting the
other threads to finish their associated tasks. For GED, the work-stealing is important to
keep the amount of work balanced between all threads. In the literature, this process is
referred to as Load Balancing, see Section 4.3.3.

Even if DryadOpt [20] was massively parallel, the best upper bound was not shared
with the other machines except at the end of each round. In fact, that is a problem in
DryadLINQ [151] and Hadoop [145] which is due to the restricted communication of both
of them.

At the beginning of Section 4.2, a few number of questions was raised. After having
explored the state-of-the-art of BnB parallel and distributed approaches, we provide some
answers here:

Regarding subtasks (see Question 1), in the GED problem, g(p), h(b) and edge oper-
ations tree nodes are less time-consuming tasks than tree nodes exploration. Thus based
on that, subtasks can be tree nodes.

Questions 2, 3, 4 and 5 are linked together and are dependent on the difficulty of the
subtasks to be solved. There is no rule or advice provided in the literature to decide what
is the number of processors an application has to have or what is the number of subtasks
that has to be created before parallelism or distribution starts.

Concerning the distribution of the subtasks (see Question 8), the choice here depends
on the regularity and predictability of the duration/difficulty to solve a subtask. In the
case of GED, the decomposition, or distribution, is irregular due to the bounding/pruning.
Such a thing cannot be known except at run time. Thus, a load balancing strategy seems
to be mandatory to optimize the distribution of subtasks and to avoid having idle threads.

Concerning the questions related to the division of the problem into subtasks (see
Questions 6 and 7), it seems that the classical way is to give each worker a branch of
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Reference Thread/process
Tasks

Communication
Pattern

Massively
Parallel?

# threads/processes Addressed
Problem

[103] Thread: Sub-tree Asynchronous No 128 threads 15-puzzle

[28] One kernel for
children genera-
tion and another
for children
elimination

Synchronous No 480 CUDA cores (15
multiprocessors with 32
cores each)

Flowshop

[33] Thread: Sub-tree Asynchronous Yes 1 machine with 16-core
multi-thread

Flow-Shop

[96] Thread: Sub-tree Asynchronous No 1152 threads Traveling Sales-
man

[42]
(two ap-
proaches)

Thread/Process:
Children genera-
tion

Synchronous No 32 threads Knapsack Prob-
lem

[4] Thread: Tree
branch

Synchronous Yes 1024 threads Minimum-
distance between
two unattributed
graphs

[93] Thread: Tree
branch

Asynchronous No 2 cores, 4 threads maximum labeled
clique

[12] Process: Sub-tree Asynchronous No 267 machines each has 4
cores

Three-phase elec-
trical distribution
networks

[20] Process: Sub-tree Synchronous Yes 128 machines each has 4
cores

the Steiner tree
problem

Table 4.2: Synthesis of Parallel and Distributed methods for BnB

the tree or a part of the sub-tree to be explored in a parallel or distributed way. The
problem is then to estimate the time needed to explore each branch. Finally (see Question
8), the upper bound UB is a necessary variable to be shared with all workers. Thus we
have to choose an architecture that allows an easy and fast way to share/communicate
UB between workers. On this basis, the next sections present the way(s) we propose to
parallelize and distribute the GED algorithm.

4.3 Load Balancing for a Parallel Graph Edit Distance

4.3.1 Motivation

As mentioned in Section 4.2.3, the search tree of GED contains nodes that represent
partial edit paths. When thinking of a parallel and/or a distributed approach of DF, these
edit paths can be given to threads as tasks to be solved. Such a step, divides the GED
problem into smaller problems. The GED problem is irregular in the sense of having an
irregular search tree where the number of nodes differs, depending on the ability of lb(p)
to prune the search tree. Based on that, as already explained, it becomes hard to estimate
the time needed by threads to explore a sub-tree. Likewise, the number of CPUs and/or
machines have to be adapted to the amount and type of data that have to be analyzed.
Some experiments in Chapter 5 illustrate this point and are followed by a discussion.

As seen in [33], a breadth-first strategy is performed before a depth-first one starts.
However, when generating nodes using breadth-first, one may generate unfruitful nodes.
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Instead, one may think of A∗ since it starts exploring nodes that lead to the optimal
solution, if lb(p) is carefully chosen. But, there are two key issues: First, how many nodes
shall be generated by A∗ before a DF procedure starts? Second, how to divide, or dispatch,
the nodes between threads?

The method proposed by [103] requires lots of communication between threads. First,
for the upper bound and second for threads to steal some work from the other threads.
However, that will not be a bottleneck for solving GED in a parallel. Roughly speaking,
only UBCOST and UB have to be shared with all threads. In fact, at the beginning of DF,
UBCOST and so UB might be modified. However, after a certain amount of time, they
will not be updated that often, see Figure 3.2. Furthermore, a work-stealing is beneficial
to cope with the irregularity of the DF ’s search tree. Thus, when any thread finishes all
its assigned nodes, a certain amount of nodes can be given to it by another thread. Such a
procedure is referred to as load balancing in the literature. The following question should
be addressed ”Which nodes can be taken, or stolen, from one thread to another when a
thread runs out of tasks?”.

Before digging into the details of this approach, the load balancing problem is formally
defined and presented to establish the basement of an efficient parallel GED algorithm.
Moreover, an overview of our proposal is given.

4.3.2 From Graph Edit Distance to Load Balancing

GED is a discrete optimization problem that faces the combinatorial explosion curse.
The complexity class of GED was proven to be NP-hard where the computation complexity
of matching is exponential in the number of vertices of the involved graphs [153].

Generally speaking, the combinatorial optimization problem is characterized by an
unpredictably varying unstructured search space. The search space is represented as an
ordered tree.

The initial and leaf tree nodes correspond to the initial state and the final acceptable
state in the search tree, respectively. Each edge represents a possible way of state change.
A path from the initial node to a leaf tree node is a feasible solution to the optimization
problem. A combinatorial optimization problem is essentially the problem of finding a
minimum-cost path from an initial node to a goal node in the search tree which represents
a partial solution. More concretely in GED, each tree node is a sequence of edit operations.
Leaf nodes are complete edit operations sequences (edit path) while intermediate nodes are
partial solutions representing partial edit path. An example of a search tree corresponding
to GED computation is shown in Figure 4.3.

The parallelism of combinatorial optimization problems is not trivial. In a parallel
combinatorial search application, thread evaluates candidate solutions from a set of pos-
sible solutions to find one that satisfies at best a problem-specific criterion. Each thread
searches for optimal solutions within a portion of the solution space. The shape and size
of the search space usually change as the search proceeds. Portions that encompass the
optimal solution with high probability will be expanded and explored exhaustively, while
portions that have no solutions will be discarded at run-time. Consequently, tree nodes
are generated and destroyed at run-time. To ensure parallel efficiency, tree nodes have to
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A B 

C D 

A  B  

C  

root 

A → A  A → B  A → C  A → ℇ 

B → A  B → C  B → ℇ 

Figure 4.3: An incomplete search tree example for solving the GED problem. The first
floor represents possible matchings of vertex A with each vertex of the second graph (in
blue). Each tree node is a partial solution which is to say a partial edit path

be dispatched at run-time. Hence, the patterns of workload changes of the threads are
difficult to predict.

The parallel execution of combinatorial optimization problems relies on load balancing
strategies to divide the search space iteratively at run-time. From the viewpoint of a load
distribution strategy, parallel optimizations fall in the asynchronous category. A thread
initiates a balancing operation when it becomes lightly loaded or overloaded. The objective
of the data distribution strategies is to ensure a fast convergence to the optimal solution
such that all the tree nodes are evaluated as fast as possible. To achieve this goal our
proposal makes sure that all threads have more or less the same amount of load while
ensuring threads to explore promising tree nodes first.

4.3.3 Load Balancing Problem

A parallel program is composed of multiple threads, each thread is a processing unit
which performs one or more works. Multiple threads can exist within the same process
and share resources such as memory. In particular, the threads of a process share its
instructions (executable code) and its context (the values of its variables at any given
moment). A work is defined by a workload and it is the smallest unit of concurrency the
parallel program can exploit. In GED, we define a work as a tree node to be expanded.

Load balancing algorithms can be broadly categorized into static and dynamic. Static
load balancing algorithms distribute works to threads once and for all, in most cases relying
on a priori knowledge about the works and the system on which they run, while dynamic
algorithms bind works to threads at run-time. A very detailed definition of load balancing
models can be found in [149].

Creating a parallel program involves first decomposing the overall computation into
works and then assigning the works to threads. The decomposition together with the
assignment steps is often called partitioning. The assignment on its own is referred to
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static load balancing.

4.3.3.1 Static Load Balancing

Static load balancing algorithms rely on the estimated execution times of works and
inter-thread communication requirements. It is not satisfactory for parallel programs that
are of the dynamic and/or unpredictable kind. For instance, in GED, we cannot predict
the time needed by a sub-tree to be fully explored.

We are given a set of works W and a set A of parallel threads. A work j in the
set of works Q which is processed on a thread k has a workload measure ωk,j . The
goal is to assign works to threads such that the maximum thread load is minimized.
In equation 4.1, an integer linear programming formulation of the static load balancing
formulation is provided. In equation 4.1, variable xkj = 1 if a work j is processed on

thread k and 0 otherwise. ωmax = maxk∈A
∑

j∈Q ωk,jx
k
j is the maximum load of a thread.

ω = 1
|A|
∑

k∈A
∑

j∈Q ωk,j is the average workload of the threads A.

Static load balancing formulation

min
x

(
ωmax − ω

)
(4.1a)

subject to
∑
k∈A

xkj = 1 ∀j ∈ Q (4.1b)∑
j∈W

ωk,jx
k
j ≤ ωmax ∀k ∈ A (4.1c)

xkj ∈ {0, 1} ∀(j, k) ∈ A×W (4.1d)

(4.1e)

Static load balancing problem is closely related to a problem called P ||Cmax [43] in
scheduling theory. It is known to be an NP-hard problem when the number of threads
is greater or equal to 2. Consequently, the static load balancing problem is a NP-hard
problem too.

4.3.3.2 Dynamic Load Balancing

The execution of a dynamic load balancing algorithm requires some means for main-
taining a consistent view of the system state at run-time. Generally, a dynamic load
balancing algorithm consists of three components: a load measurement rule, an initiation
rule, and a load balancing operation.

Load Measurement Dynamic load balancing algorithms rely on the workload infor-
mation of threads. The workload information is typically quantified by a load index, a
non-negative variable taking on a zero value if the thread is idle, and taking on increas-
ing positive values as the load increases [149]. Since the measure of load would occur
frequently, its calculation must be very efficient.
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Initiation Rule This rule dictates when to initiate a load balancing operation. The
execution of a balancing operation incurs non-negligible overhead; its invocation decision
must weight its overhead cost against its expected performance benefit. An initiation
policy is thus needed to determine whether a balancing operation will be profitable.

Load Balancing Operation This operation is defined by three rules: location, distri-
bution and selection rules. The location rule determines the partners of the balancing
operation, i.e., the threads to involve in the balancing operation. The distribution rule
determines how to redistribute workload among threads in the balancing domain. The
selection rule selects the most suitable data for transfer among threads.

4.3.4 Dynamic Load Balancing Models

Consider a parallel program running on a parallel computer. The parallel computer
is assumed to be composed of T identical threads, labelled from 1 through T . Threads
are interconnected by a shared memory. Threads communicate through shared variables.
The parallel computation comprises a large number of works, which are the basic units
of workload. Works may be dynamically generated and consumed for load balancing as
the computation proceeds. We distinguish between the computational operation and the
balancing operation. At any time, a thread can perform a computational operation or
a balancing operation. This dynamic workload model is valid in situations where some
threads are performing balancing operations, while the others are performing computa-
tional operations. The situation is common in parallel tree-structured computations, such
as combinatorial optimizations.
Let t be a time variable, representing global real time. We quantify the workload of a
thread k at time t by ωtk. Let φt+1

i denote the amount of workload generated or finished
between time t and t + 1. Let I(t) denote the set of thread performing balancing opera-
tions at time t. Then, the workload change of a thread at time t can be modelled by the
following equation:

ωtk =

{
balancej∈A(k)(ω

t
k, ω

t
j) + φt+1

k if k ∈ I(t);

ωtk + φt+1
k otherwise

where balance() is a load balancing operator and A(k) is a set of threads that are within
the load balancing domain of thread k. This model dynamic workload model, given by
[149], is generic because the operator balance(), the balancing domain A() of a thread,
and the set of threads in load balancing at a certain time t, I(t), are left unspecified. The
operator balance() and the balance domain A() are set by load balancing operations; the
set I(t) is determined by the initiation rule of the load balancing algorithm. The choice
of I(t) is independent on the load balancing algorithm where any initiation policy can be
used in conjunction with any load balancing operation in implementation.

4.3.4.1 Dynamic Load Balancing Formulation

We denote the overall workload distribution at certain time t by a vector Ωt =
(ωt1, ω

t
2, · · · , ωtP ). Denote its corresponding equilibrium state by a vector Ω

t
= (ωt, ωt, · · · , ωt),
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where ωt =
∑P

i=1
ωt
k
P . The workload variance, denoted by v t, is defined as the deviation of

Ωt from Ω
t
; that is,

v t = ‖Ωt − Ω
t‖2 =

P∑
i=1

(ωtk − ωt)2 (4.2)

The optimization problem is introduced by minimizing the workload variance at any time
t. Variable of the problem is the set of threads performing balancing operations at time t.

min
I(t)

vt ∀t ∈ [0,∞[ (4.3)

In equation 4.3, the variable t is integer and represents the discrete time rated by the
initiation rule of the load balancing algorithm.

The objective of the data distribution strategy is to ensure a fast convergence to the
optimal solution such that all the tree nodes are evaluated as fast as possible.

4.3.5 Decomposition and Load Balancing Procedures

Now that we have explained the load balancing problem and models, we can describe
how we have used these models to define a parallel version of our DF algorithm. Our
algorithm referred to as parallel DF (PDFS ) consists of three main steps: Decomposition,
Branch-and-Bound and Load Balancing. Figure 4.4 pictures the whole steps of PDFS.

Decomposition using A* 

G1 G2 

BnB 
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Load Balancing 

Initialization, 
Decomposition 
& Assignment 

Figure 4.4: The main steps of PDFS
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4.3.5.1 Initialization, Decomposition and Assignment

Decomposition Before starting the parallelism a decomposite approach is applied aim-
ing at distributing the workload or subproblems among threads. For that purpose, N
edit paths are first generated using A∗ by the main thread and saved in the heap. After-
wards, the N edit paths are sorted as an ordered tree starting from the node whose lb(p)
is minimum up to the most expensive one. Note that N is a parameter of PDFS.

Assignment Let Q be the set of partial solutions outputted by A∗. Assigning partial
solutions to parallel threads is equivalent at solving the static load balancing problem
stated in equation 4.1. Due to the complexity of the problem, we chose to avoid an exact
computation and we adopted an approximated algorithm. The greedy algorithm called
”Graham’s Rule”. Algorithm 11 depicts the strategy we have followed. Once the partial
edit paths are sorted in the centralized heap (line 1), the local list OPEN of each thread
is initialized as an empty set (lines 2 to 4). Each thread receives one partial solution at
a time, starting from the most promising partial edit paths (line 8). The threads keep
taking edit paths in that way until there is no more edit path in the centralized heap (lines
6 to 10).

Algorithm 11 Dispatch-Tasks

Input: A set of partial edit paths Q generated by A∗ and T threads.
Output: The local list OPEN of each thread Ti

1: Q ← sortAscending(Q)
2: for Tindex ∈ T do
3: OPENTindex

← {φ}
4: end for
5: i=0 . a variable used for thread’s indices
6: for p ∈ Q do
7: index = i % |T |
8: OPENTindex

.addTask(p)
9: i++

10: end for
11: Return OPENTindex

∀ index ∈ [1, |T |]

Each thread maintains a local heap to keep the assigned edit paths for exploring edit
paths locally. Such an iterative way guarantees the diversity of nodes difficulty that are
associated to each thread.

4.3.5.2 Branch and Bound

When the GED problem is decomposed and assigned to different threads, each thread
executes a serial BnB algorithm for exploring its edit paths locally. In this section, the
BnB and load balancing procedures are detailed.
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Branching Procedure Initially each thread has only its assigned edit paths in its local
heap tree OPEN (i.e., the set of the edit paths), found so far. This procedure is similar
to DF, see Section 3.3. The exploration starts with the first most promising vertex u1 in
sorted -V1 in order to generate children of the selected edit path. Then, the children are
added to OPEN. Consequently, a minimum edit path (pmin) is chosen to be explored by
selecting the minimum cost node (i.e., min(g(p) + h(p))) among thechildren of pmin and
so on. Threads backtrack to continue the search for a good edit path if pmin equals φ. In
this case, we try out the next child of parent(pmin) and so on.

Bounding Procedure As in DF, pruning, or bounding, is achieved thanks to h(p), g(p)
and an upper bound UBCOST obtained at node leaves. However, in PDFS, UBCOST
and UB are shared between all threads since it is saved in a shared memory.

Selection Rule A systematic evaluation of all possible solutions is performed without
explicitly evaluating all of them. The solution space is organized as an ordered tree which
is explored in a depth-first way. In depth-first search, each node is visited just before its
children. In other words, when traversing the search tree, one should travel as deep as
possible from node i to node j before backtracking.

4.3.5.3 Load Balancing

Load Measurement Each thread Ti provides some information about its workload or
weight index ωi. Obviously, the number of edit paths of a thread can be a workload
index. However, this choice may not be accurate since BnB computations are irregular
with different computational requirements. Several workload indices can be adapted. One
could think of h(p). Formally:

wi =

|OPENTi
|∑

j=1

h(pj) ∀i ∈ Ti

where OPEN Ti is the local OPEN of thread Ti. However, h(p) can be hard to interpret,
it can be small either because p is close to the leaf node or because p is a very promising
solution. To eliminate this ambiguity one can count the number of vertices in G1 that
have not been matched yet. Formally:

wi =

|OPENTi
|∑

j=1

|pendingV1(p(j)| ∀i ∈ Ti

In our approach, we have selected the latter.

Initiation Rule An initiation rule dictates when to initiate a load balancing operation.
Its invocation decision must appear when a thread workload index ωi reaches a zero value
that is to say if the thread is idle.

if ωti = 0→ I(t) where i ∈ {1, 2, · · · , P}
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Load Balancing Operation In parallel BnB computations, each thread solves one or
more sub-problems depending on the decomposite procedure. In our problem, two threads
are involved in the load balancing operation: heavy and idle/light threads referred to
as TH and TL, respectively. When a thread becomes idle or light, the heaviest thread
TH will be in charge of giving to TL some edit paths to explore. All the edit paths of
the heavy thread are ordered using their lb(p). The heavy thread divides the best edit
paths between it and the light thread. This procedure is done through a peer-to-peer
communication since both threads have a shared memory. Algorithm 12 presents the load
balancing step which guarantees the exploration of the best edit paths first since each
thread holds some promising edit paths. In the beginning, ωH and ωL are calculated (lines

1 and 2). At each iteration, a verification of whether or not ωL is less than
ωH
2

is achieved

(line 3) since the objective is to divide the workload between TH and TL. OPEN TH is
arranged in the same way as DF (i.e., in a depth-first way). In order to ensure that TH
and TL take both most and less promising edit paths as well as edit paths whose search
tree level is lowest and highest, at each iteration, TH gives its second located edit path p
to TL and removes it from its sub-tree OPEN TH (line 4). TL then inserts p to its OPEN TL

(line 5). Note that TL inserts edit paths in the same order as they were in OPEN TH (i.e.,
by putting the edit path that should be explored first in the first cell and so on). Before
starting the next iteration, the new ωL is calculated (line 5). Algorithm 12 terminates
when ωL becomes equal or greater than ωH .

Algorithm 12 Load-Balancing

Input: A heavy thread TH and a light thread TL
Output: the local lists OPEN of TL and TH (i.e., OPEN TL) and OPEN TH )).

1: ωH ← TH .getWorkLoad()
2: ωL ← TL.getWorkLoad()

3: while ωL <
ωH
2

do

4: p← OPEN TH .getandRemove(2)
5: OPEN TL .addLast(p)
6: ωL ← TL.calculateWorkLoad()
7: end while
8: Return OPEN TL and OPEN TH

4.3.5.4 Thread Communication

All threads share Cv, Ce, sorted -V1 (read-only), UB and UBCOST (read/write). Since
all threads try to find a better UBCOST and UB, a memory coherence protocol is required
on the shared memory location of UBCOST and UB [83]. When two threads simultane-
ously try to update UBCOST, a synchronization process is applied in order to make sure
that only one thread can access the resource at a given point in time.
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4.3.6 Pseudo Code

Algorithm 13 summarizes all the aforementioned procedures of PDFS. As in DF, PDFS
starts by generating Cv and Ce (line 1). Since PDFS is a parallel version of DF, Cv and
Ce are put in a shared memory so that all threads can access to them. BP is run and its
solution (i.e., UB and UBCOST ) is used as an upper bound and put in shared variables
UBshared and UBCOST shared (line 2). Then, the vertices of G1 are sorted as explained
in Section 3.3.2.2 (line 3). A∗ with lb2 is executed and stopped once N partial edit paths
are generated and saved in a list Q (line 4). The edit paths of Q are then divided between
all threads T using the Dispatch-Tasks procedure, see Algorithm 11. At the beginning of
PDFS, there is no heavy or light thread and thus their indices are equal to -1 (line 6).
Each thread Ti runs a BnB procedure on its editpaths that are saved in its local sub-tree
OPENTi (lines 7 to 9).

Algorithm 13 Parallel DF (PDFS )

Input: Non-empty attributed graphs G1 = (V1, E1, µ1, v1) and G2 = (V2, E2, µ2, v2) where
V1 = {u1, ..., u|v1|} and V2 = {v1, ..., v|v2|}, a parameter N which is the number of the first
generated partial edit paths and threads T .
Output: A minimum distance UBCOST shared and a minimum cost edit path (UBshared)
from G1 to G2 e.g., UB= {u1 → v3, u2 → ε , ε→ v2}

1: Generate Cv and Ce
2: (UBshared,UBCOST shared) ← BP(G1, G2)
3: sortedV1 ← sortVerticesV1(V1,V2)
4: Q ← A∗(N)
5: {OPENT } ← Dispatch-Tasks(Q,T )
6: H ← −1, L← −1 . The indices of the heaviest and the lightest thread, respectively
7: parallel for Ti ∈ T do
8: Call Partial-Branch-and-Bound(OPENTi ,T ,UBCOST shared, UBshared)
9: end parallel for

10: Return (UBCOST shared,UBshared)

Algorithm 14 depicts the Partial-Branch-and-Bound that each thread Ti executes on
its OPEN Ti . This algorithm differs from DF in the sense of putting UBshared and UB-
COST shared in a place accessible to all threads and thus memory coherence is required, see
Section 4.3.5.4. Thus, when thread Ti finds a better UBCOST shared it acquires a lock so
as to insure that there is no other thread that modifies UBCOST shared at the same time.
This kind of access to the variables in the shared memory is denoted by atomic access.
Thus, in order to achieve atomic access, locks are introduced (lines 13 and 14), thread Ti
acquires the lock preventing other threads from accessing to UBshared and UBCOST shared

. Once it finishes the update of these shared variables, it releases the lock. When OPEN Ti

becomes empty, Ti will be considered as the light thread since its workload ωi is zero (line
27). In such a case, a search for the heaviest thread is done through findHeaviestThread
procedure (line 28). Algorithm 15 illustrates the process of finding the heaviest thread via
the search for the biggest ω value. Once TH is found, the load balancing procedure starts
(line 33), see Algorithm 12. Load balancing is also atomically accessed. That is, only one
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thread at a time t can access to it to steal some works from the heaviest thread.

If both ωH and ωL have a workload that equals zero, PDFS will terminate by out-
putting UBshared and UBCOST shared as an optimal solution since there is no more edit-
path to explore (lines 29 to 31).

4.3.7 Advantages and Drawbacks

PDFS ’s memory complexity is |T |.|V1|.|V2|. PDFS has some additional time when
compared to DF because of tasks decomposition, threads initialization, work stealing and
load balancing procedures. Thus, if the GM problem is small (i.e., when matching small
graphs), DF is faster than PDFS to find the optimal solution. However, when matching
larger graphs, PDFS can converge faster to the optimal solution since all threads work in
a collaborative way.

PDFS has an advantage over DF since it explores different parts of the search tree as it
gives each part of it to a thread. Such a fact allows a wider exploration of the search space
and thus more easily escapes local optima. Unlike DF which may find a local optimum
that look good locally but not globally and thus it can hardly escape it specially when the
size of the search tree is huge.

PDFS, however, only works on one machine and cannot scale up to work on several
machines. Thus in the next section, a distributed DF will be presented.

4.4 A Distributed Graph Edit Distance Algorithm

In order to have a massively distributed algorithm, one may need to reduce communi-
cation between machines. Thus, in this chapter, a distributed and optimized depth-first
algorithm for exact GED computation is proposed without the notion of load balancing.
The proposed architecture looks similar to the architecture proposed in [12]. However,
instead of simply using MPI as a model, we build MPI over Hadoop MapReduce [145]
in order to take advantage of the fault tolerance of Hadoop. So if a thread fails another
thread re-executes its tasks without needing to re-execute the program, see Table 4.1.
However, Hadoop is a model with restricted communication patterns. Thus, in order to
allow threads to send messages and notify the other threads when finding better UBCOST
and UB, a message passing tool is adopted [70]. Moreover, our proposed algorithm uses
both parallelism (at the core level) and distributed execution (at the machine level).

As in PDFS, the search tree is cleverly pruned thanks to lb(p) and a shared UBCOST
between all threads. In addition, tree branches, or partial edit paths, are explored in a
completely distributed manner to speed up the tree traversal. A search tree decomposition
is performed first to fragment the GM problem into smaller ones that are solved in a
distributed manner. Our distributed approach, referred to as D-DF, consists of a single
job.
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Algorithm 14 Partial-Branch-and-Bound

Input: A local list OPENTi , the set of threads T , UBCOST shared and UBshared

Output: A minimum distance UBCOST shared and a minimum cost edit path (UBshared)
from G1 to G2

1: pmin ← φ
2: UBCOST ← read(UBCOST shared)
3: while true do
4: if OPEN Ti != {φ} then
5: p ← OPEN Ti .popFirst() . Take the first element and remove it from OPEN Ti

6: Listp ← GenerateChildren(p)
7: if Listp = {φ} then
8: for vi ∈ pendingV2(p) do
9: q ← insertion(ε , vi) . i.e., {ε→ vi}

10: p.AddFirst(q)
11: end for
12: acquire lock()
13: if g(p) < UB then
14: UBshared ← p
15: UBCOST shared ← g(p)
16: end if
17: release lock()
18: else
19: Listp ← SortAscending(Listp) . according to g(p)+h(p)
20: for q ∈ Listp do
21: if g(q) + h(q) < UB then
22: OPEN Ti .AddFirst(q)
23: end if
24: end for
25: end if
26: else
27: L← i
28: H ← findHeavisetThread(T )
29: if ωH = 0 then
30: Return (UBCOST shared, UBshared)
31: else
32: acquire lock()
33: OPEN Ti ← Load-Balancing(TL,TH)
34: release lock()
35: end if
36: end if
37: end while

96



4.4. A DISTRIBUTED GRAPH EDIT DISTANCE ALGORITHM

Algorithm 15 findHeavisetThread

Input: All threads T
Output: The index of the heaviest thread (H)

1: H ← −1 . the index is initialized to -1
2: maxWorkLoad← −1
3: for Ti ∈ T do
4: ωi ← TH .calculateWorkLoad()
5: if ωi > maxWorkLoad then
6: maxWorkLoad← ωi
7: H ← i
8: end if
9: end for

10: Return H

Definition 16 Job
A job is a distributed procedure which has one or more workers (i.e., threads that are
assigned to tasks). Each worker takes a task or a bunch of tasks to be solved. The whole
process is referred to as job.

The master thread, which has a special copy of the program assigns problems to be
solved, or so called tasks, to workers (i.e., both master and slave threads). Each of these
workers is the responsible of its assigned tasks. Thus, once a worker finishes a task, it
sends its result to the master. See Figure 4.5.

MASTER  
CLOCK  
TIME 

SLAVE  
CLOCK  
TIME 

Slave  
timestamp 

master 
timestamp 

Figure 4.5: Messages sent from master to workers and vice versa

In order to schedule tasks associated to each worker, two scheduling approached can
be integrated: Static and Dynamic Scheduling. In Static Scheduling, each worker can be
given a certain number of tasks, in this case workers send their results back to the master
node once they finish all their associated tasks. On the other hand, Dynamic Scheduling
may associate one or more tasks to each worker, associating tasks occurs at run time.
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4.4.1 Distributed Depth-first GED Approach

Algorithm 16 represents the three main steps of D-DF. First, the master matches G1

and G2 using BP and outputs both UB and its UBCOST and the vertices V1 are then
sorted (lines 2 and 3). Second, A∗, see Section 2.3.1.1, is executed and stopped once N
partial edit paths are generated (line 5), see Section 2.3.1.1. Afterwards, these partial
edit paths (Q) are sorted in ascending order and inserted to OPEN (lines 6 to 9). The
master also saves UB and its UBCOST in a place/space accessible by all workers W (lines
10 and 11). Each worker also copies Cv and Ce in its local memory (lines 13 to 15).
Finally, the master distributes the work (i.e., Q) among workers, each worker takes one
edit path from the master at a time (line 17). This step differs from PDFS since each
thread takes one and only one edit path at a time t instead of having a predefined list of
edit paths. The reason is that D-DF does not have a load balancing procedure and thus
allowing each thread to take one and only one edit path will keep the threads balanced
as much as possible. Workers start the exploration of their associated partial edit paths
(line 18). If a worker finishes its assigned partial edit path, it sends a message to the
master asking for a new edit path (lines 19 to 21). When finishing all the partial edit
paths, saved in FileOPEN−shared, the program outputs UBshared and UBCOST shared as
an optimal solution of matching G1 and G2 (line 23).

Algorithm 17 demonstrates the function Partial-Depth-First-GED that each worker
w executes on its assigned partial edit path p. Note that each p is given to an available
worker by the master. The procedures of this algorithm are similar to DF, the only
difference is that UBCOST and UB are saved in a shared space that is accessible by all
workers W . These shared variables are referred to as UBCOST shared and UBshared. All
the workers read the value stored in UBCOST shared through read message (line 3). They
also put a watch on UBCOST shared via Set-Watch message so as to be awaken when any
change happens to its value (line 4). All the workers solve their associated partial edit
path. Whenever worker w succeeds in finding a better value of its UBCOST, it updates
both UBCOST shared and UBshared through update messages (lines 14 and 16), the master
then sends a notification via notify-Worker message to all the other workers (line 17).
Workers read the new value, update their local UB and continue solving their problems.
Moreover, workers re-establish, or reset, the watch for data changes through Reset-Watch
message (lines 18 to 21). The update of UBCOST shared is achieved carefully as only
one worker can change UBCOST shared at any time t. That is, if two workers want to
change UBCOST shared at the same time, one of them is delayed by the master for some
milliseconds before entering the critical point. The final answers (i.e., the exact matching
and its distance) are found in UBshared and UBCOST shared respectively when all workers
finish their associated tasks.

Figure 4.6 illustrates the messages shared between the master and the workers when
updating UBCOST shared.

4.4.2 Advantages and Drawbacks

D-DF is a fully distributed approach where each worker accomplishes its task without
waiting for each other. Moreover, the search tree is cleverly pruned. As soon as any worker
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Algorithm 16 Distributed DF (D-DF )

Input: Non-empty attributed graphs G1 = (V1, E1, µ1, v1) and G2 = (V2, E2, µ2, v2) where
V1 = {u1, ..., u|v1|} and V2 = {v1, ..., v|v2|}. A parameter N which is the number of the first
generated partial edit paths and workers W .
Output: A minimum distance UBCOST shared and a minimum cost edit path (UBshared)
from G1 to G2 e.g., UB= {u1 → v3, u2 → ε , ε→ v2}

1: Generate Cv and Ce
2: (UB , UBCOST ) ← BP(G1, G2)
3: sortedV1 ← sortVerticesV1(V1,V2)
4: OPEN ← {φ}
5: OPEN ← A∗(N)
6: OPEN ← SortAscending(OPEN)
7: for q ∈ Q do
8: OPEN.AddFirst(q);
9: end for

10: UBCOST shared ← UBCOST {put UBCOST in an accessible place to all workers}
11: UBshared ← UB {put UB in an accessible place to all workers}
12: FileOPEN−shared ← OPEN
13: parallel for w ∈W do
14: Cvw ,Cew ← copy(Cv,Ce)
15: end parallel for
16: parallel for w ∈W do
17: Get-Next-Task: p← FileOPEN−shared.popFirst()
18: Call Partial-Depth-First-GED(p,W ,UBCOST shared, UBshared )
19: if FileOPEN−shared is not empty then
20: Repeat Get-Next-Task {Asking the master for a new edit path}
21: end if
22: end parallel for
23: Return (UBCOST shared, UBshared).
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Algorithm 17 Partial-Depth-First-GED

Input: An edit path p, the set of workers W , UBCOST shared and UBshared

1: OPEN ← {φ}, pmin ← φ
2: OPEN.addFirst(p)
3: UBCOST ← read(UBCOST shared)
4: Set watch on UBCOST shared

5: while OPEN != {φ} do
6: p ← OPEN.popFirst() . Take first element and remove it from OPEN
7: Listp ← GenerateChildren(p)
8: if Listp = {φ} then
9: for vi ∈ pendingV2(p) do

10: q ← insertion(ε , vi) . i.e., {ε→ vi}
11: p.AddFirst(q)
12: end for
13: if g(p) < UB then
14: UB ← p
15: UBCOST shared ← g(p) + h(p)
16: UBshared ← p
17: MASTER: notify-all-workers w ∈W
18: for w ∈W do
19: UBCOST ← read(UBCOST shared)
20: Reset watch on UBCOST shared

21: end for
22: end if
23: else
24: Listp ← SortAscending(Listp) . according to g(p)+h(p)
25: for q ∈ Listp do
26: if g(q) + h(q) < UB then
27: OPEN.AddFirst(q)
28: end if
29: end for
30: end if
31: end while
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Figure 4.6: Messages shared between the masters and the workers when a worker updates
UBCOST shared.

finds a better UBCOST shared, it sends the new value to the master. Then, the notification
to all the other workers is achieved by the master. Finally, all the workers receive the new
value. Such operations help in pruning the workers’ search trees as fast as possible.

D-DF is a single-job approach and thus the drawback behind such an approach is that
some workers might become idle because there is no more edit path in FileOPEN−shared
while the other ones are still working as they have not finished their assigned edit paths.
Figure 4.7 illustrates an example of three workers; two of them were stopped since their
g(p)+h(p) is greater than UB while one of them continues its exploration.

w2 w1 w3 

File OPEN-shared 

Figure 4.7: Unbalanced search space. Three workers w1, w2 and w3 are given some
edit paths. w1 and w2 were stopped since their g(p)+h(p) is greater than UB while the
exploration of the search space of w3 continues

To overcome such a problem, this algorithm can be transformed into multi-jobs, or
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multi-iterations, algorithm where the master distributes again some edit paths to workers.
This can be a future extension of this algorithm.
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Chapter 5

New Metrics and Datasets for
Performance Evaluation of Graph
Edit Distance

Science is not about making predictions or performing experiments. Science is about

explaining. Bille Gaede
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Abstract

As explained in Chapter 2, most of the publicly available repositories with associ-
ated ground truths are dedicated to evaluating graph classification or exact GM methods.
However, to evaluate the accuracy of GED methods, information is required not only at
class level but also at matching level even during classification experiments. Thus, the
matching correspondences as well as the distance between each pair of graphs have to be
directly evaluated. This chapter consists of three parts: First, a graph database repository
annotated with graph-level information like graph edit distances and their matching corre-
spondences is proposed and described. Second, a set of metrics to assess GED methods in
a more precise way is put forward. Third, the experiments of the GM methods proposed
in the thesis are conducted on these new databases with the help of the proposed metrics.
A discussion is raised after each experiment. This chapter ends with classification tests
and concluding remarks.
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5.1 Motivation

As it was presented in the previous chapters, many exact and approximate approaches
have been proposed for solving GED [111, 71, 106, 48]. As a first step to evaluate such
approaches, one needs to find repositories dedicated to evaluating GM in general or GED
in particular.

Graph repositories have been made publicly available for the community [105, 150].
However, to the best of our knowledge, most of these repositories have been put forward
for classification and clustering experiments. Moreover, only high-level information has
been given to the community such as the class labels of the objects represented by graphs.
When evaluating classification, the matching quality is evaluated indirectly through a
recognition rate which highly depends on the classifier and does not allow a clear analysis
of the matching algorithms. On the other hand, graph-level information has not been
provided. For instance, the exact matching between vertices and edges of each pair of
graphs, see Table 2.4.

We believe that providing graph-level information is of great interest for understanding
the behavior of GED methods in terms of accuracy and speed as a function of graph
properties like size and attribute types. Hence, instead of proposing yet a completely
new graph database repository, we propose adding graph-level information for well-known
and publicly used databases. For that purpose, the GREC, Mutagenicity, Protein, and
CMU databases were selected [105, 2]. Added information consists of the best found
edit distance for each pair of graphs as well as their vertex-to-vertex and edge-to-edge
matching corresponding to the best found distance. This information helps in assessing
the feasibility of exact and approximate methods.

Our repository, called Graph Data Repository For Graph Edit Distance (GDR4GED),
aims at making a first step towards a GM repository that is able to assess the accuracy
of error-tolerant GM methods. All the graph databases and their added information are
publicly available1. Moreover, we propose novel performance evaluation metrics that aim
at comparing a set of GED approaches based on several significant criteria. For instance,
deviation and solution optimality. All the provided criteria could be assessed under time
and memory constraints.

5.2 GDR4GED: A Graph Set Repository with Graph-Level
Ground Truth for Graph Edit Distance Evaluation

This section is divided into four main parts. First, in Section 5.2.1 we direct attention
to some important remarks that have to be considered before starting the evaluation of
GED methods. Second, in Sections 5.2.2 and 5.2.3 we focus on the description of the
selected graph databases, their justification as well as the details of the information added
to each database. Third, in Section 5.2.4, the protocol followed for building GDR4GED is
depicted. Last, but not least, performance evaluation metrics are defined in Section 5.2.6.

1http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.html
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5.2.1 Meta Parameters

One difficulty when evaluating GED methods comes from the cost functions used for
each graphs database and so their associated meta parameters, see Section 2.1.11.6. For
each database, two non-negative meta parameters associated to GED are included (τvertex
and τedge) where τvertex denotes a vertex deletion or insertion cost whereas τedge denotes an
edge deletion or insertion costs. A third meta parameter α is integrated to control whether
the edit operation cost on the vertices or on the edges is more important. From each GM
pair, we derive two notions: a distance between each pair of graphs and vertex-vertex and
edge-edge matching or so-called edit sequence. When comparing a set of methods, one has
to choose the same database(s), with the same cost functions as well as their associated
parameters.

5.2.2 Databases

We aim at evaluating scalability of GED approaches (i.e., when increasing the number
of vertices). To this end, we decomposed each database into disjoint subsets, each of which
contains graphs that have the same number of vertices. Moreover, we aim at studying the
behavior of each algorithm on different types of attributes.

As shown in Table 2.3, most of the public datasets consist of synthetic graphs that
are not representative of PR problems concerning GM under noise and distortion. We
shed light on the IAM graph repository which is a widely used repository dedicated to
a wide spectrum of tasks in pattern recognition [105]. Moreover, it contains graphs of
both symbolic and numeric attributes which is not often the case of other datasets. In
addition to IAM, we also include another database called CMU [2] houses since it has
numeric attributes on vertices and is widely used in GM thanks to its vertex-to vertex
ground truth. This database consists of 111 geometric graphs.

5.2.2.1 GREC Database

The GREC database used in our experiments is taken from IAM. GREC consists of
a subset of the symbol database underlying the GREC2005 competition [85]. The im-
ages of GREC represent symbols from architecture, electronics, and other technical fields.
Distortion operators are applied to the original images in order to simulate handwritten
symbols. In Figure 5.1 five drawing samples of GED are given. Each of the samples rep-
resents a distortion level. Depending on the distortion level, either erosion, dilation, or
other morphological operations are applied.

Figure 5.1: GREC: A sample image of each distortion level

The primitive lines of the symbols are then divided into sub-parts. The ending points
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of these sub-parts are then randomly shifted within a certain distance, maintaining con-
nectivity. Each vertex represents a sub-part of a line and is attributed with its relative
length (ratio of the length of the actual line to the length of the longest line in the symbol).
Connection points of lines are represented by edges attributed with the angle between the
corresponding lines. The dataset consists of 6 classes and 30 instances per class. This
dataset is useful as both vertices and edges are labeled with numeric attributes. In addi-
tion, it holds graphs whose sizes vary from 5 to 25 vertices.

Database Interest GREC is composed of undirected graphs of rather small size (i.e.,
up to 25). In addition, continuous attributes on vertices and edges play an important role
in the matching process. Such graphs are representative of pattern recognition problems
where graphs are involved in a classification stage.

Cost Function The vertices of graphs from GREC dataset are labeled with (x, y)
coordinates and a type (ending point, corner, intersection or circle). The same accounts
for the edges where two types (line, arc) are employed. The Euclidean cost model is
adopted accordingly. That is, for vertex substitutions the type of the involved vertices
is compared first. For identically typed vertices, the Euclidean distance is used as vertex
substitution cost. In case of non-identical types on the vertices, the substitution cost is
set to 2τvertex, which reflects the intuition that vertices with different type label cannot
be substituted but have to be deleted and inserted, respectively. For edge substitutions,
the dissimilarity of two types is measured with a Dirac function returning 0 if the two
types are equal, and 2τedge otherwise. Both τvertex and τedge are non-negative parameters.
This dataset consists of 1,100 graphs where graphs are uniformly distributed between 22
symbols. The resulting dataset is split into a training and a validation set of size 286 each,
and a test set of size 528.

Additionally to (x, y) coordinates, the vertices of graphs from the GREC database
are labeled with a type (ending point, corner, intersection, circle). For edges, two types
(line, arc) are employed. The cost functions of vertex and edge substitutions, deletions
and insertions are defined as follows:

• c(u→ ε) = c(ε→ v) = α.τvertex

• c(ui → vk) =

{
α.|µ(ui)− µ(vk)|, if labels are similar

α.2.τvertex, otherwise

• c(eij → ekz) = 2.(1− α).Dirac(µ(eij), µ(ekz))

• c(eij → ε) = c(ε→ ekz) = (1− α).τedge

where ui ∈ V1, vk ∈ V2, eij ∈ E1 and ekz ∈ E2. µ is a function which returns the
attribute(s) of each vertex/edge. (∗ → ε) and (ε → ∗) denote vertex/edge deletion and
insertion, respectively. In our experiments, we have set τvertex, τedge and α to 90, 15 and
0.5 respectively. As in GREC, these meta parameters’ values are taken from the thesis of
Riesen [110].
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GREC Decomposition We decompose the database into subsets, each of which con-
tains graphs that have the same size. We focus on the following subsets: (GREC5,
GREC10, GREC15 and GREC20) aiming at evaluating the two methods when increasing
the size of the involved graphs (i.e., the number of vertices). Due to the large number of
mappings considered and the exponential complexity of the tested algorithms, we select 10
graphs of the train set of each subset of GREC. The train set is representative of all graph
distortions and the selection of only 10 graphs per subset ends up having 100 pairwise
comparisons which is significant for such a kind of experiments. Furthermore, we add
another subset GREC-mix that contains different number of vertices (i.e., 10 graphs with
different number of vertices).

5.2.2.2 Mutagenicity Database

Mutagenicity is the capacity of a chemical or physical agent to cause permanent genetic
alterations. The Mutagenicity database was originally prepared by the authors of [72].
Graphs are simply transformed into attributed graphs where vertices represent atoms and
are labeled with the number of the corresponding chemical symbol whereas edges represent
the covalent bonds and are labeled with the valence (i.e., the combining power of atoms)
of the linkage. For simplicity, we denote this database as MUTA.

Database Interest MUTA is representative of GM problems where graphs have only
symbolic attributed. MUTA gathers large graphs up to 70 vertices.

Cost Function Edge substitutions are free of cost (i.e., edge cost equals Zero). For
vertex substitutions, the dissimilarity of two chemical symbols is calculated with a Dirac
function returning 0 if the two symbols are equal, and 2τvertex otherwise. Mathematically
saying, the cost functions of operations on vertices and edges are defined as follows:

• c(ui → ε) = c(ε→ vk) = 2.α.τvertex

• c(ui → vk) =

{
0, if they have the same symbols

α.2.τvertex, otherwise

• c(eij → ε) = c(ε→ ekz) = (1− α).τedge

• c(eij → ekz) = 0

where (τvertex, τedge,α) values of Mutagenicity are set to (11,1.1,0.25). These meta
parameters’ values are also taken from [110].

Database Decomposition We also shrunk the train set of MUTA by selecting 10
graphs in each of the following subsets (MUTA-10, MUTA-20, MUTA-30 . . . MUTA-70).
In the MUTA train set, the number of train graphs of MUTA-50, MUTA-60 and MUTA-70
is less than 10. Hence, to complete the subsets, we took some graphs from the test or the
validation subsets. We also added another subset, denoted by MUTA-mix, that contains

107



5.2. GDR4GED: A GRAPH SET REPOSITORY WITH GRAPH-LEVEL GROUND
TRUTH FOR GRAPH EDIT DISTANCE EVALUATION

10 graphs of various number of vertices. As in GREC, 100 comparisons are carried out in
each subset.

5.2.2.3 Protein Database

The Protein database was first reported in [72]. The graphs are constructed from the
Protein Data Bank and labeled with their corresponding enzyme class labels from the
BRENDA enzyme database [68]. The Proteins database consists of six classes (EC1, EC2,
EC3, EC4, EC5, EC6), which represent Proteins out of the six enzyme commission top
level hierarchy (EC classes). The Proteins are converted into graphs by representing the
secondary structure elements of a Protein with vertices and edges of an attributed graph.
Vertices are labeled with their type (helix, sheet, or loop) and their amino acid sequence
(e.g., TFKEVVRLT). Every vertex is connected with an edge to its three nearest neighbors
in space. Edges are labeled with their type and the distance they represent in angstroms.

Database Interest This database contains numeric attributes on each vertex as well as
a string sequence that is used to represent the amino acid sequence.

Cost Function For vertex substitutions, the two selected vertices’ types of the two
graphs g1 and g2 are compared first. That is, if two types are identical, string edit distance
(SED) [142] is carried out on the amino acid sequences of the vertices to be substituted.
Given two amino acid sequences (s1 and s2), the corresponding cost of substitutions,
insertions, and deletions of symbols in s1 and s2 is defined as follows:

c(ci → cj) = c(ci → ε) = c(ε → ci) = 1, c(ci → ci) = 0, s.t. ci, cj ∈ s1, s2 and ci 6= cj

The cost functions of matching operations are defined as follows:

• c(ui → ε) = c(ε→ vk) = α.τvertex

• c(ui → vk) =

{
SED(µ(ui), µ(vk)), if labels are similar

α.τvertex, otherwise

• c(ekz → ε) = c(ε→ ekz) = (1− α).τedge

• c(eij → ekz) =

{
0, if labels are similar

α.τedge, otherwise

where (τvertex,τedge,α) are set to (11,1,0.75), taken from [110], and SED is string edit
distance [142].

Database Decomposition 10 graphs were selected from Protein-20, Protein-30 and
Protein-40. In addition, 10 graphs were picked up from the aforementioned Protein subsets
and were put in the mixed database referred to as Protein-mix. 100 pairwise mappings
per subset are conducted and integrated in the repository.
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5.2.2.4 CMU Database

The CMU model house sequence is made up of a series of images of a toy house that
has been captured from different viewpoints. 111 images in total are publicly available.
660 comparisons are carried out.

Graphs Construction A manual identification of corner features, or points, was done
to represent vertices on each of the rotated images. Then, the Delaunay triangulation
was applied on the corner-features in order to identify edges and finally transform the
images into graphs. Vertices are labeled with (x,y) coordinates while edges are labeled
with the distance between vertices. Each graph has 30 vertices and matched with graphs
representing the same image rotated at 10, 20, 30, 40, 50, 60, 70, 80, and 90 degrees. Since
vertex-to-vertex mappings are given, the accuracy of the final matching sequence of any
method p can be computed by verifying whether or not the matched vertices are correct.
Figure 5.2 demonstrates two CMU houses subjected to rotations. Then, a matching is
applied on their generated graphs.

 

Figure 5.2: Graph partitions on Delaunay triangulation and their matching correspon-
dences

Database Interest Unlike the aforementioned databases, the CMU database has a
model house sequence that consists of a series of images. Each of which has been manually
annotated by a human being providing its key points (corner features). That is, vertex-
to-vertex matching (i.e., graph-level information) between each pair of graphs has been
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created by humans. We believe that it would be interesting to see if GED methods are
able to provide solutions that can be compared to humans’ point of view ”whether they
are far or close to them”.

Cost Function We empirically set (τvertex,α) to (∞,0.5). The cost functions of matching
vertices and edges are similar to [155]. We formalize them as follows:

• c(u→ ε) = c(ε→ v) = α.τvertex

• c(u→ v) = 0

• c(eij → ε) = c(ε→ ekz) = (1− α).µ(ekz)

• c(eij → ekz) = (1− α).|µ(eij)− µ(ekz)|

Table 5.1 summarizes the characteristics of all the selected datasets as well as the meta
parameters, needed by GED methods, that have been associated to them.

Dataset GREC Mutagenicity Protein CMU houses

Size 4337 1100 600 111

Vertex labels x,y coordinates Chemical symbol Type and amino acid sequence x,y coordinates

Edge labels Line type Valence Type and length Distance between points

vertices 11.5 30.3 32.6 30

edges 12.2 30.8 62.1 79

Max vertices 25 71 40 30

Max edges 30 112 146 79

(τvertex, τedge, α) (90,15,0.5) (11,1.1,0.25) (11,1,0.75) (τvertex,α) = (∞,0.5)

Table 5.1: The characteristics of GREC, Mutagenicity, Protein and CMU houses datasets

We are aware of the necessity of having a graphs database with larger graphs. Mean-
while, GDR4GED does not have such a database. However, such databases will be added
soon and will be made publicly available. To overcome this limitation, experiments on
synthetic graphs of different sizes have been conducted in the thesis, see Section 5.3.8.

5.2.3 Added Graph-Level Information

For each graphs pair (Gi, Gj), in addition to the initial content of the databases the
following graph-level information is provided:

• The optimal or sub-optimal solution provided by the most accurate GED method
for d(Gi, Gj). Since GED is a minimization problem, the most accurate method is
the one whose distance is the smallest among all the other methods.

• The name of the most accurate GED method.

• The solution status (i.e., optimal or sub-optimal).

• The edit path sequence corresponding to the best solution found so far.

Table 5.2 illustrates an example of two graphs taken from GREC-5 and their added
information in GDR4GED. All these information are available as csv files in our website.
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G1 Name G2 Name Method Distance Optimal Matching

image3 23 image3 25 BS−100 135.178 false

Vertex:0→ 0=37.476/ Vertex:1→ 1=6.519/ Vertex:2→ 2=

32.070/ Vertex:4→ 4=34.409/ Vertex:3→ 3=24.703/

Edge:2↔ 3→ 2↔ 3 =0.0/ Edge:0↔ 4→ 0↔ 4=0.0

Table 5.2: Graph-level information (taken from the file GREC5-lowlevelinfo.csv)

5.2.4 Graph Edit Distance Methods for Building the Ground Truth

In order to build the GED ground truth included in GDR4GED, a variety of methods
were selected. From the related works, we chose three exact methods and four approx-
imate methods. Moreover, both ADF and D-DF were included. Of course, it is worth
clarifying that there are other papers that have been recently published in the scope of
GED, outstanding with respect to their scientific contributions. However, because they
are recent, we have not been able to be exhaustive in the experiments.

5.2.4.1 Exact Methods

On the exact method side, first, A∗ algorithm applied to GED problem [111] is a
foundation work. It is the most well-known exact method and it is often used to evaluate
the accuracy of approximate methods. Second, ADF is also a depth-first GED that beats
A∗ in terms of run time and precision as seen in the previous chapters. Last but not least,
D-DF was integrated in the experiments since it is a distributed algorithm.

Table 5.3 shows the five exact algorithms included in the tests:

Acronym Reference Description of the method
A∗ [106] A∗ algorithm, h(p) = lb2

ADF this thesis Depth-first algorithm
D-DF this thesis Distributed GED depth-first algorithm

Table 5.3: Exact methods used to build the ground truth of GDR4GED

5.2.4.2 Approximate Methods

On the approximate method side, we can distinguish three families of methods, tree-
based methods, assignment-based methods and set-based methods. For the tree-based
methods, the truncated version of A∗ (i.e., BS) was chosen. This method is known to
be one of the most accurate heuristic from the literature. Among the assignment-based
methods, we selected BP. In [106], authors demonstrated that BP is a good compromise
between speed and accuracy. Finally, we picked a recent set-based method. An approach
based on the Hausdorff matching has been recently proposed in [49]. All these methods
cover a good range of GED solvers and return a vertex-to-vertex matching as well as
a distance between two graphs G1 and G2 except the Hausdorff matching which only
returns a distance between two graphs. The approximate methods that are included in
the experiments are depicted in Table 5.4.

111



5.2. GDR4GED: A GRAPH SET REPOSITORY WITH GRAPH-LEVEL GROUND
TRUTH FOR GRAPH EDIT DISTANCE EVALUATION

Acronym Reference Type Description of
the method

Parameter(s)

BP [106] Upper
bound

the Bipartite
GM BP

∅

BS-x [90] Upper
bound

Beam search
approach of
A∗ along with
a bipartite
heuristic.

max. number of
open paths x ∈
N∗

H [48] Lower
bound

Modified Haus-
dorff distance
applied to
graphs

∅

Table 5.4: Approximate methods used to build the ground truth of GDR4GED

5.2.4.3 Experimental Settings

To build the ground truth of GDR4GED, the experiments were conducted on a 5-node
cluster of machines running JAVA Runtime Environment 1.7 and Hadoop MapReduce
version 1.4.0. Each node contains a 4-core Intel i7 processor 3.07GHz, 8GB memory and
one hard drive with 380GB capacity. Hadoop was allocated 20 workers (4 workers per
machine), each with a maximum JVM memory size of 1GB. For sequential algorithms,
evaluations are conducted on one node.

5.2.4.4 Evaluation Protocol

As GM methods have high complexity, it is sometimes difficult to have enough resources
and time to run many methods on large data sets, to wait for a final answer given by each
method and to get good quality statistics. Thus, as we have proposed an Anytime GM
method, it seems also interesting for us to evaluate the resources and time needed by
each method to output a solution. To obtain this kind of information about methods, we
propose analyzing the behavior of the different methods under a time constraint (CT ) as
well as a memory constraint (CM ). In the experiments, CT is set to 300 seconds while CM
is set to 1GB.

5.2.5 Availability of GDR4GED

In the previous sections of this chapter, we have proposed a new repository called
GDR4GED. This repository is made publicly available 2 including the additional graph-
level annotation (i.e., the best solution found by a GED method) for each pair of graphs.
For the reason of testing the scalability of GED methods, we divided GREC, MUTA,
Protein and CMU into subsets that can also be found on the website.

New performance evaluation metrics have been put forward to assess GED methods.
Due to the high complexity of GED methods, we propose evaluating them under time and
memory constraints.

2http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.html

112



5.2. GDR4GED: A GRAPH SET REPOSITORY WITH GRAPH-LEVEL GROUND
TRUTH FOR GRAPH EDIT DISTANCE EVALUATION

5.2.6 Performance Evaluation Metrics

In this section, we define and put forward the new metrics used to evaluate any GED
method that can be used under both time and memory constraints (i.e., CT and CM ). We
divide the metrics into two groups depending on whether a metric separately evaluates
each pair of graphs or takes all the pairs of graphs together.

5.2.6.1 Metrics for each pair of Graphs

Deviation: The error committed by each method p over the reference distances is a very
important characteristic to evaluate GM methods. For each pair of graphs matched by
method p, we provide the following deviation measure:

dev(Gi, Gj)
p =
|d(Gi, Gj)

p −GTGi,Gj |
GTGi,Gj

, ∀(i, j) ∈ J1,mK2,∀p ∈ P (5.1)

where m is the number of graphs. d(Gi, Gj)
p is the distance obtained when matching

Gi and Gj using method p while GTGi,Gj corresponds to the ground truth provided in our
csv files. GTGi,Gj represents the best distance among all methods p for matching graphs Gi
and Gj . As all comparisons are evaluated under CT , GTGi,Gj does not necessarily have to
be the optimal distance. In other words, GTGi,Gj represents the best solution found under
CT . This solution could be optimal when CT is reasonable to solve the given matching
problem. For each method p, the mean dev(Gi, Gj)

p is computed. Note that the less the
deviation the more precise the algorithm. In other words, 0% refers to the best case while
100% refers to the extreme case.

Matching Dissimilarity: Let EP refer to vertex-to-vertex mappings between G1 into
G2. We aim at finding how dissimilar are two EP s (i.e., EPp and EPq) that correspond to
matching Gi and Gj using methods p and q. Thus, the idea here is to see how far an EPi
obtained when matching a pair of graphs from the best EP that is saved in the GDR4GED
repository. To this objective, we count the differences between the two solutions, we
exclude edge correspondences in order to only concentrate on vertex correspondences since
edge mappings/correspondences can be deduced by their adjacent vertices, see Figure 2.8.

Mathematically saying, the distance between EP p and EP q is defined as:

d(EP p, EP q) =

∑n
i=1

∑m
j=1 δ(EP p(i), EP q(j))∑n

i=1

∑m
j=1 1

(5.2)

where n = |EP p|, m = |EP q| and δ(EP p(i), EP q(j)) is the well-known Kronecker
Delta function [148]:

δ(EP p(i), EP q(j)) =

{
0, if EP p(i) = EP q(j)

1, if EP p(i) 6= EP q(j)
(5.3)

Note that even if two methods have a deviation that is similar, their matching can
be different. Figure 5.3 represents two solutions whose distances are close, however their
matching can be different since x1 belongs to a different place in the search space.
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Figure 5.3: Two local optima x1 and x2. f(x1) is close to f(x2) however the matching of
both of them is different since they belong to different parts in the search space

Similar to the deviation metric, the less the matching dissimilarity the better precise
the algorithm. In other words, 0% refers to the best case while 100% refers to the extreme
case when the matching of an algorithm differs completely from the best matching that is
saved in the ground truth GT .

Best Found Solutions: We count the number of times the best known solution is
found by method p. This number indicates that method p was able to find the best known
solution, not necessarily the optimal one. The solution is supposed to be the best one
when compared to all the involved methods. Note that the more best solutions found by
method p, the better the method.

5.2.6.2 Metrics for a full Dataset

Number of Explored Nodes: We propose measuring the number of explored nodes
in the tree search for each comparison d(Gi, Gj). This number represents the number of
moves in the search tree needed to obtain the best found solution. The mean number of
explored nodes in the tree search is calculated as follows:

#explored nodesp =
1

m×m

m∑
i=1

m∑
j=1

expnd(d(Gi, Gj)
p) (5.4)

where m × m is the total number of comparisons per subset, m is the number of
graphs to be matched and expnd(d(Gi, Gj)

p) is the number of explored nodes obtained
when matching graphs Gi and Gj of subset s using method p. Note that p has to be a
tree-search based algorithm (e.g., A∗ [111] and BS-x [90]).

Number of Unfeasible Solutions: For each method p, we measure the number of
times method m was not able to find any EP. This case can happen when CT or CM is
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violated before finding a complete solution. (i.e., when there is only incomplete matching
correspondences). Lower bound methods [48] always give unfeasible solutions as they only
output distances without matching sequences.

Number of Time-Out and Out-Of-Memory Cases: For each subset, we count the
number of times method p violates CT and CM respectively.

Run time: We measure the overall time in milliseconds (ms), for each GED computa-
tion. The mean run time is calculated per subset s and for each method p.

Time-Deviation Scores: To sum up advantages and drawbacks of each method p,
a projection of p on a two-dimensional space (R2) is achieved by using speed-score and
deviation-score features defined in equations 5.7 and 5.8 where speed and deviation are
two concurrent criteria to be minimized. First, for each database, the mean deviation and
the mean time is derived as follows:

devpk =
1

m×m

m∑
i=1

m∑
j=1

dev(gi, gj)
p ∀p ∈ P ∀k ∈ #subsets (5.5)

timepk =
1

m×m

m∑
i=1

m∑
j=1

time(Gi, Gj)
p and (i, j) ∈ J1,mK2 ∀k ∈ #subsets (5.6)

where dev(Gi, Gj) is the deviation of each d(Gi, Gj) and time(Gi, Gj) is the run time
of each d(Gi, Gj). To obtain comparable results between databases, mean deviations and
times are normalized between 0 and 1 as follows:

deviation scorep =
1

#subsets

#subsets∑
i=1

devpi
max devi

(5.7)

speed scorep =
1

#subsets

#subsets∑
i=1

timepi
max timei

(5.8)

where max devi = max(devpi ) and max timei = max(timepi ) ∀p ∈ P

5.3 Evaluations of the Proposed Methods

In the next sections we will evaluate the methods proposed in the thesis against the
state-of-the-art methods using the metrics proposed in the repository. It is worth clarifying
that the ground truth GTGi,Gj was built using the methods mentioned in Section 5.2.4. In
our experiments, we compare our methods to some methods that were not used to build
GTGi,Gj . For this reason, we upgraded GTGi,Gj taking the results of these methods into
account. As a short-term perspective, we intend to upgrade the publicly available version
of GDR4GED considering all the methods included in our experiments.
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5.3.1 Studied Methods

We compare ADF, PDFS and D-DF to six other graph edit distance algorithms from
the literature. From the related works, we chose three exact methods and four approximate
methods.

5.3.1.1 Exact Methods

On the exact method side, first, A∗ algorithm applied to GED problem [111] is a foun-
dation work. It is the most well-known exact method and it is often used to evaluate the
accuracy of approximate methods. In addition, a binary linear programming formulation
of GED published in [71] is also added. This formulation is implemented and solved using
CPLEX-12 mathematical solver. Last but not least, a naive parallel PDFS, referred to as
naive-PDFS, is implemented and compared to PDFS. The basis of naive-PDFS is similar
to PDFS. However, naive-PDFS does not include neither the assignment phase (see Sec-
tion 4.3.5.1) nor the load balancing phase (see Section 4.3.5.3). Instead of the assignment
phase, a random assignment is applied where T1 takes the first N/T tree nodes, T2 takes
the second N/T tree nodes and so on, where N is the number of the edit paths generated
by A∗ and Tare the threads integrated in solving the GED problem. naive-PDFS does not
include a balancing strategy which means that if a thread Ti finished its assigned nodes,
it would be idle during the rest of the execution of naive-PDFS.

Table 5.5 shows all the exact algorithms included in the tests:

Acronym Reference Description of the method
A∗ [106] A∗ algorithm, h(p) = lb2

JHBLP [71] the Binary linear programming formu-
lation of GED proposed by Justice and
Hero

ADF this thesis Anytime depth-first algorithm
naive-PDFS this thesis Naive parallel depth-first algorithm

PDFS this thesis Parallel depth-first algorithm with
static and dynamic load balancing tech-
niques

D-DF this thesis Distributed depth-first algorithm

Table 5.5: Notations corresponded to each exact GED method

5.3.1.2 Approximate Methods

As for the approximate GED methods, we have included all the methods mentioned
in Table 5.4. In addition, FBP which is a fast version of BP is also added [121]. Note

that the Degree Centrality (λdegi ) has been integrated in both BP and FBP, see Section
2.3.1.2. Moreover, in our implemented version of FBP, the three restrictions on the edit
costs were not included. Since H is a lower bound of GED, in the ideal case, it should
be compared to other methods only when the optimal solution is found. Moreover, unlike
other methods, H is unable to output a matching. Table 5.6 summarizes all the included
approximate methods.
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Acronym Reference Type Description of
the method

Parameter(s)

BP [106] Upper
bound

the Bipartite
GM BP

∅

FBP [121] Upper
bound

Square Fast BP ∅

BS-x [90] Upper
bound

Beam search
approach of
A∗ along with
a bipartite
heuristic.

max. number of
open paths x ∈
N∗

H [48] Lower
bound

Modified Haus-
dorff distance
applied to
graphs

∅

Table 5.6: Notations corresponded to each approximate GED method

5.3.2 Environment

PDFS and naive-PDFS are implemented using Java threads. The evaluation of both
algorithms are conducted on a 24-core Intel i5 processor 2.10GHz, 16GB memory. For
sequential algorithms, evaluations are conducted on one core.

Since D-DF is a distributed algorithm, it has a different environment. Thus, the eval-
uation of D-DF is conducted on a 5-node cluster of machines running Hadoop MapReduce
version 1.4.0. Each node contains a 4-core Intel i7 processor 3.07GHz, 8GB memory and
one hard drive with 380GB capacity. Hadoop was allocated 20 workers (4 workers per
machine), each with a maximum JVM memory size of 1GB.

5.3.3 Parameters Selection for the Proposed Methods

This study aims at understanding the impacts of parameters on our algorithms. For
the sake of clarity and for better synthesis, parameters are only studied on the GREC
dataset. However, for the rest of the experiments in this chapter, all the included methods
are evaluated on all datasets.

5.3.3.1 Lower Bounds

A∗, ADF and the extensions of ADF (i.e., PDFS, naive-PDFS and D-DF ) have lb as
a parameter. To solve the problem of estimating h(p) and so lb(p) for the costs from the
current node p to a leaf node, one can map the unprocessed vertices and edges of graph
G1 to the unprocessed vertices and edges of graph G2 such that the resulting costs are
minimal. This mapping should be done in a faster way than the exact computation and
should return a good approximation of the true future cost. Note that the smaller the
difference between h(p) and the real future cost, the fewer nodes will be expanded by A*.
In this part of the section, three h(p)s and so lb(p)s are discussed. Two of them (i.e.,
lb2 and lb3) are based on well-known upper bound and lower bound GED algorithms,
respectively.
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lb1 : In the simplest scenario of an A∗ algorithm, the estimation function h(p) of the
future costs for the current node p is always set to zero i.e., h(p) = 0.

lb2 : The idea is to reformulate the assignment algorithm as a problem of finding an
exact matching in a complete bipartite GM on the unmapped vertices and edges yet to
estimate the future costs. Let p be a node at a given position in the search tree, and let the
number of unprocessed vertices of the first graph G1 and the second graph G2 be n1 and
n2, respectively. To obtain a lower bound of the exact edit cost, we accumulate the costs of
the min{n1, n2} least expensive of these vertex substitutions, the costs of max{0, n1−n2}
vertex deletions and max{0, n2 − n1} vertex insertions. Any of the selected substitutions
that is more expensive than a deletion followed by an insertion operation is replaced by the
latter. This is performed by an assignment algorithm based on BP, see Section 2.3.1.2.
The complexity of such a method is O(max{n1, n2}3). The unprocessed edges of both
graphs are handled analogously. Obviously, this procedure allows multiple substitutions
involving the same vertex or edge and, therefore, it possibly represents an invalid way to
edit the remaining part of G1 into the remaining part of G2. However, the estimated cost
certainly constitutes a lower bound of the exact cost.

lb3 : This lower bound is inspired by the modified Hausdorff Distance [48], see Section
2.3.1.2. The idea here is to use the modified Hausdorff Distance as a heuristic function
that estimates the future costs while applying it on the remaining or unprocessed vertices
and edges of G1 and G2. The complexity of this lower bound is O((n1 + n2)2).

Table 5.7 summarizes these lower bounds:

Acronym Description of the method

lb1 No lower bound (i.e., h(p) = 0).

lb2 Vertex assignment and edge assignments in a separated manner, each of which applies BP.

lb3 Modified Hausdorff GED applied on remaining vertices and edges.

Table 5.7: Lower bounds’ notations

Since PDFS and D-DF are extensions of ADF, ADF is the only method that is inte-
grated in the lb study. Different variants of A∗ and ADF were evaluated, each of which
has lb1, lb2 or lb3. In this part of the experiments, CT is set to 300 seconds while CM is
set to 1GB.

Results and Discussion Figures 5.4 and 5.5 show the effect of lb1, lb2 and lb3 on A∗

and ADF, respectively. Results showed that lb2 is the best lower bound for both A∗ and
ADF as it had the least deviation and the maximum number of best found solutions on all
subsets. Moreover, the choice of lb2 made both A∗ and ADF run faster. Figures 5.4(f) and
5.5(f) empirically demonstrate that lb2 represented the minimum run time and deviation
scores. Indeed, having an efficient lower bound helps in discarding exploring unfruitful
nodes that do not lead to a better, or an improved, solution. One can see such a fact
in Figures 5.4(c) and 5.5(c). Moreover, we can clearly see that the simplest scenario lb1
explored mores nodes when compared to lb2 and lb3 as it did not estimate the remaining
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cost of each node. As a result, in the rest of the paper lb2 is used as a lower bound of
each of A∗, ADF, PDFS and D-DF.
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Figure 5.4: Lower bound study on A∗
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Figure 5.5: Lower bound study on ADF
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5.3.3.2 PDFS’ Parameters

In this section, parameters of both naive-PDFS and PDFS are studied. Finally a
choice between naive-PDFS and PDFS is made.

Number of Threads We study the effect of increasing the number of threads T on
both the accuracy and speed of PDFS as well as naive-PDFS. T is varied from 2 to 128
threads.

Figure A.1 displays the effect of the number of threads T on the performance of PDFS.
One may notice that increasing the number of threads resulted in increasing the chance
to find a better solution (see Figure A.1(b)), more optimal solutions (see Figure A.1(c))
a smaller deviation (see FigureA.1(a)) as we explored more nodes in a parallel manner
(see Figure A.1(d)). Thus, the overall run time decreased (see Figure A.1(f)) and the
number of time-outs decreased (see Figure A.1(e)). Since the machine on which we run
this test has a 24-core processor, there is a threshold when increasing the number of
threads. For example, on 128 threads the deviation became bigger and the number of
time-outs increased. On a 24-core machine, 32 and 64 threads had got the best results.
Note that increasing the number of threads also increased the load balancing, one can see
that through Figure A.1(g). In the rest of the experiments, the number of edit paths will
be set to 100 while the number of threads will be set to 64.

For naive-PDFS, the same experiment was conducted. At the end, the number of
threads was set to 128.

Parameter N The effect of several values of N , described in Section 4.3.5.1, is studied.
We expect PDFS to perform better when increasing N up to a threshold where the accu-
racy of the algorithm will be degraded under the same CT . Five values of N are chosen:
-1, 100, 250, 500 and 1000, where N=-1 represents the decomposition of the first floor
in the search tree with all possible branches, N= 100 and 250 moderately perform load
balancing while N=500 and 1000 is the exhaustive case where threads have much less time
dedicated to load balancing since each thread will be assigned sufficient number of works
before the parallelism starts.

Figure A.2 demonstrates the effect of the number of initial edit paths N on the per-
formance of PDFS. On can remark that N equals 100 illustrated the best choice in terms
of the number of best found solutions, number of optimal solutions and deviation. One
can notice that even though N equals 100 spent much more time on load balancing, it was
still 2.3 times more precise than N equals 1000, see Figure A.2 since the latter spent much
more time on decomposing the problem into 1000 sub-problems rather than exploring the
search space as fast as possible. N equals 1000 represented the least precise results.

For naive-PDFS, the same experiment was conducted. In the end, N was also set to
100.

Static and Dynamic Load Balancing Procedures In this section we compare both
PDFS and naive-PDFS in order to choose the best one to be compared to the state-of-
the-art methods. Both algorithms were executed on 128 threads so as to be comparable.
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Since PDFS and naive-PDFS are considered as extensions of ADF, lb2 is used as a lower
bound of both of them.

The results in Figure 5.6 show that PDFS beats naive-PDFS with 26 more optimal
solutions. In fact, PDFS minimized the variance, stated in equation 4.3, which was not
the case of naive-PDFS. One can also observe that PDFS is fully parallelized where the
CPU time was doubled compared to naive-PDFS. For all these criteria and for the rest of
the chapter, PDFS is selected and compared to the other GED methods.
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Figure 5.6: The effect of the number of edit paths on the performance of PDFS when
executed on the GREC dataset

5.3.3.3 D-DF’s Parameters

Number of Machines We study the effect of increasing the number of machines, from
2 to 5 machines where 5 is the maximum number of machines in our cluster, on both
accuracy and speed.

Figure B.1 displays the effect of the number of machines (M ) on the performance of
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D-DF. M was varied from 2 to 5 where 5 represents the maximum number of machines
dedicated to the experiments. One may notice that increasing the number of machines
resulted in increasing the chance to find a better solution (see Figure B.1(b)), more opti-
mal solutions (see Figure B.1(c)) and smaller deviation (see FigureB.1(a)) as distribution
scheme explore more nodes (see Figure B.1(d)). Thus, the overall run time decreased (see
Figure B.1(f)) and the number of time-outs decreased too (see Figure B.1(e)). We authors
believe that running D-DF on a larger cluster (e.g., 100 machines) tremendously decreases
the run time and therefore enhances the deviation and increases the number of optimal
solutions. Accordingly, M has been set to 5 in order to use all the available resources of
the cluster.

Parameter N The effect of several values of N , described in Section 3.3, is studied. We
expect D-DF to perform better when increasing N up to a threshold where the accuracy
of the algorithm will be degraded under the same CT . As in PDFS, five values of N are
chosen: 20, 100, 250, 500 and 1000, see Section 5.3.3.2.

Figure B.2 demonstrates the effect of the number of initial edit paths N on the per-
formance of D-DF. In order to efficiently distribute edit paths among workers, N should
ensure that all workers will always be busy and never become idle during the execution of
D-DF.

When N was equal to 20, some workers finished their work and thus became idle instead
of exploring new edit paths. This fact affected the best found solutions and the average
CPU time, see Figure B.2. On the other hand, when N was equal to 500 or 1000, partial
edit paths became small and vast resulting in an increase of the communication overhead
between the master and workers. The communication overhead of 1000 can be visibly
seen in Figures B.2(d), B.2(e), B.2(f) and B.2(g) as when the communication overhead
increased, the average CPU time decreased, the number of explored nodes decreased and
the number of time-out cases incredibly increased. The best choice was illustrated when N
was equal to 100 or 250. Both values had similar results in terms of the number of time-out
cases, number of optimal solutions and deviation. However, the latter was superior to the
former in terms of CPU usage. As a result, in the rest of experiments, N has been set to
250.

5.3.4 Protocol

In this section, the experimental protocol is presented and the objectives of the exper-
iment are described.

The objective of the experiments is four-fold:

• Testing the methods proposed in the thesis as well as the methods of the state-of-
the-art under soft and hard time constraints when compared to the other algorithms
proposed in the state-of-the-art.

• Studying the trade-off between quality and time of our anytime algorithm ADF
against the state-of-the-art methods.
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• Studying the behavior of some algorithms when increasing the number of vertices
and graphs’ density.

• Classifying graphs using both exact and approximate GED methods under time and
memory constraints.

5.3.4.1 Tests under Soft Time Constraints

The aim of this experiment is to illustrate the error committed by approximate methods
over exact methods. In an ideal case, no time constraint should be imposed to reach the
optimal solution. Due to the large number of mappings considered and the exponential
complexity of the tested algorithms, we allowed a maximum of 300 seconds. This time
constraint is large enough to let the methods search deeply into the solution space and to
ensure that many nodes will be explored. The key idea is to reach the optimality, whenever
it is possible, or at least to get as close as possible to the Graal, the optimal solution. This
use case is necessary when it is important to accurately compare images represented by
graphs even if the execution time is long.

5.3.4.2 Tests under Hard Time Constraints

The goal is to evaluate the accuracy of exact methods against approximate methods
when time matters, that is to say in a context of very limited time. Thus, for each dataset,
we select the slowest graph comparison using an approximate method among BP and H
as a first time constraint. Unlike BP and H, BS is not included as it is a tree-search which
outputs the best solution found so far even on a limited time constraint. Mathematically
saying, the time constraint CT is defined as follows:

CT = max
m,i,j
{timem(Gi, Gj)} (5.9)

Where m ∈ Ms /BS, (i, j) ∈ J1, kK2 and time is a function returning the run time of
method p for a given graph comparison. This way ensures that BP and H could solve any
instance. When the time limit is over, the best solution found so far is outputted by BS
as well as the exact GED methods. So time and memory limits play a crucial role in our
experiments since they impact such methods. Based on the previous equation, we display
in Table 5.8 the time limits used for each dataset in the thesis.

Dataset GREC MUTA Protein CMU

CT (ms) 400 500 400 500

Table 5.8: Time constraints for accuracy evaluation in limited time

CM is set to 1GB during all the experiments. Among all the aforementioned methods,
we expect A∗ to violate CM specially when graphs get larger.

In a small CT context, there are four key issues that we have taken into account:

• The number of threads in PDFS is set to 3. The reason is that since the time
constraint is quite small, we did not want to lose time on decomposing the workload
among a big number of threads.
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• Since CT is quite small, the lb computation time at each tree node is not minor.
Consequently, we have removed the lower bound from all of BS, A∗, ADF and
PDFS as lb is not trivial to compute.

• The number of initial edit paths is limited to the first level of the search tree. In
other words, the only nodes that are generates are the substitutions of u1 with each
vertex of V2 in addition to the deletion of u1 (i.e., u1 → ε).

• D-DF cannot be evaluated in a speed test context due to several reasons. First, the
time Hadoop takes to initialize its job. Second, the time D-DF takes to distribute
the first tasks (i.e., initial edit paths) among all the available workers. Finally, the
time each worker needs to read its assigned edit path. The sum of all these times
approximately equals to 20,000 ms. All these distribution aspects prevent D-DF
from being evaluated along under small CT . As D-DF is a distributed version of
ADF, instead, ADF can be used for the speed test.

5.3.4.3 Anytime Tests

The objective of the experiments is first to study how anytime methods can provide a
trade-off between quality and time according to the difficulty of the matching to realize.
For that, we illustrate curves representing the evolution of the quality of provided solutions
with the delight of time. Second, we would like to test the performance of anytime GM
methods when comparing them to approximate ones under CT . To this end, two metrics
are chosen:

• The deviation metric depicted in Section 5.2.6.

• The setup time needed by the anytime algorithm to output an initial solution (i.e.,
the first complete solution found when exploring the search tree). Only ADF and
ADF-UB are able to find one or more solutions while exploring the search tree. This
time is compared with the time taken by approximate algorithms like BS1, BP and
FBP which output one and only one complete solution. From now on, this measured
time will be called ”setup time”.

5.3.5 Testing the Proposed Methods under Soft Time Constraints

In this section, we compare the state-of-the-art’s methods to our algorithms under a
big CT (i.e., 300 seconds). JHBLP was only evaluated on MUTA since it cannot match
graphs that have attributes on edges, see Section 2.3.1.1.

5.3.5.1 Results on GREC

Figures C.1(a) and C.1(b) indicate that PDFS and D-DF had the least deviations
(around 0% on all subsets) and the best mappings/matching when compared to the other
algorithms. However, D-DF was slightly better on GREC-15 and GREC-MIX where the
gap between them was 4.5% on GREC-15 and 1.9% on GREC-MIX.
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PDFS and D-DF outperformed the other methods in terms of the best found solutions,
see Figure C.1(c). This can be visibly seen when scaling up to match larger graphs as
GREC-15 and GREC-20. D-DF found the maximum number of best found solutions, it
also defeated PDFS with 5 more better solutions.

One also can see the importance of PDFS and D-DF when matching more complex
graphs (e.g., GREC-20), in this case both algorithms outperformed ADF in terms of the
number of optimal solutions and time-out cases. As depicted in Figure C.1(d), ADF
outperformed A∗. For instance, on GREC-15 the number of optimal solutions found by
ADF was 72 while only 46 solutions were found by A∗. On GREC-20, the number of
optimal solutions decreased, A∗ found 28 optimal solutions while ADF found 44 ones.
Both PDFS and D-DF found more optimal solutions when compared to ADF. However,
the results of both algorithms were quite similar, for instance on GREC-15 PDFS won
with one more optimal solution while on GREC-20 D-DF found one more optimal solution.
Thus, the number of time-out cases in both PDFS and D-DF was the least, see Figure
C.2. PDFS and D-DF explored more nodes than ADF since they explore the search tree
in parallel and distributed fashions, respectively. D-DF, in average, explored 720200 nodes
more than PDFS, see Figure C.1(f).

Regarding run time, PDFS was always faster than ADF. However, that was not the case
of D-DF which was slower than both ADF and PDFS. This is because of the distribution
issues of D-DF, see Section 5.3.4.2. Thus, for some less difficult graph pairs, ADF took
few milliseconds (ms), while D-DF took approximately 20,000 ms. Although BS and BP
are approximate, they were able to find solutions with low deviation and low speed scores,
as depicted in Figure C.2(d). A∗ outputted some unfeasible solutions before violating
CT (on GREC-20) and CM (on GREC-15 and GREC-MIX), see Figures C.1(e), C.2(a)
and C.2(b). Note that H always outputs unfeasible solutions since it is a lower bound
algorithm.

Conclusion On the exact methods side, PDFS and D-DF were the best algorithm in
terms of deviation, matching dissimilarity and number of best found solutions. PDFS
and ADF however were faster than D-DF due to the distribution issues of D-DF. On the
approximate methods side, BS-100 proved to be the most precise one in terms of deviation
and matching dissimilarity and among the fastest algorithms. Finally on the exact versus
approximate methods side, PDFS and D-DF were the most precise algorithms. In terms
of run time, BS-10 and BS-100 were the fastest.

5.3.5.2 Results on MUTA

Figures C.3, C.4, C.5 and C.6 and C.7 illustrate the results of all methods on MUTA
when CT is equal to 300 seconds.

JHBLP was the best in terms of deviation, matching dissimilarity, number of best
found solutions, and optimal solutions, see Figures C.3(a), C.3(b), C.4(a) and C.4(b),
respectively. The only weakness we could notice regarding JHBLP was its high memory
consumption when graphs hold 70 vertices, see Figure C.6(b). For this subset, JHBLP
could not find any solutions for half of the instances, as depicted in C.5(a). In fact, this is
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due to the complexity continuous relaxation of JHBLP is O(3n7) where n is the number of
vertices of the included graphs. We can conclude that JHBLP fails to match large graphs.
Thus, On MUTA-70, BS-10 got the best deviation (i.e., 19.91%) while the deviation of
JHBLP was 50%.

PDFS and D-DF visibly outperformed ADF in terms of deviation where the average
deviation of ADF, PDFS and D-DF was 32.37%, 27.25% and 21.50 %, respectively (see
Figure C.3(a)). On the other hand, the average number of optimal solutions of A∗, ADF,
PDFS, D-DF and JH was 20.5%, 21.6%, 21.8% and 63.1%, respectively, see Figure C.4(b).
Thus, on MUTA, JH was the best algorithm among the exact GED algorithms.

The number of time-out cases of D-DF was less than ADF, see subsets MUTA-20 and
MUTA-MIX in Figure C.6(b). However, from MUTA-20 to MUTA-70, D-DF was slower
than both ADF and PDFS which is due to the time needed by this distributed algorithm
for the distribution issues, see Section 5.3.4.2. Even if D-DF explored more nodes in a
fully distributed manner, see Figure C.5(b), exploring more nodes in a distributed way
helps in updating the upper bound, see Figure C.3(a).

The deviation of FBP and BP was quite high (61% and 64%, respectively). This
fact confirms that the more complex the graphs the less accurate the answer achieved by
approximate methods. FBP and BP consider only local, rather than global, edge structure
during the optimization process [106] and so when graphs get larger, their solutions become
far from the optimal one.

On MUTA-70, despite the outperformance of D-DF over BP, H and ADF, it did not
outperform BS in terms of deviation, as shown in Figure C.7(a). We have argued that
the implemented versions of BS and ADF use lb2. The major difference between these
algorithms is the search space in addition to the Vertices-Sorting strategy which is adapted
in ADF and not in BS. Since BP did not give a good estimation on MUTA, it was also
irrelevant when sorting the vertices of g1 resulting in the exploration of misleading nodes
in the search tree. Since the graphs of MUTA are relatively large, backtracking nodes took
time. MUTA contains symbolic attributes while ADF, PDFS and D-DF are designed for
rich attributed graphs. However, the average deviation of BS compared to PDFS and
D-DF was relatively similar. JH represented the best trade-off between deviation and run
time followed by BS-100, see Figure C.7(b).

Conclusion On the exact methods side, JHBLP was the best algorithm in terms of
deviation, matching dissimilarity, run time, number of best found solutions and number of
optimal solutions. That was the case up to the graphs whose number of vertices is 60. On
MUTA-70, JHBLP, outputted unfeasible solutions due to the complexity of the continuous
relaxation of JHBLP. Thus, in this case D-DF outperformed it. On the approximate
methods side, BS-100 proved to be the most precise one in terms of deviation and matching
dissimilarity and was the fastest algorithms. Finally on the exact versus approximate
methods side, JHBLP was the most precise algorithms and fastest algorithm, followed by
BS-100 on MUTA-70.
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5.3.5.3 Results on Protein

Figures C.8 and C.9 point out that PDFS and D-DF were among the algorithms whose
deviation is the minimum. In average, the deviation of both PDFS and D-DF was 0.28%
and 0.755%, respectively. The gap between these methods increases when taking into
consideration the matching dissimilarity where in average PDFS obtained 38.5% while
D-DF obtained 41%. One can see that on all subsets of Protein (except Protein-30), the
matching dissimilarity of PDFS was the lowest. The reason for which D-DF got the lowest
matching dissimilarity on Protein-30 is that it got 3 more optimal solutions, see Figure
C.8(d).

Similar to A∗ and H, BS-100 outputted unfeasible solutions on Protein-40 and Protein-
mix and thus BS-1 beat BS-100 in terms of deviation on Protein-40. However, the match-
ing dissimilarity of BS-1 was 57.61% which is far from the best matching dissimilarity
obtained by PDFS (i.e., 38.87%).

Conclusion One can see that on Protein deviation cannot be taken as a significant
evaluation performance metric since most of the algorithms obtained quite low deviation.
In terms of deviation, BS-1, BS-10, BP, ADF, PDFS and D-DF obtained low values.
However, BP, BS-1 and BS-10 were the fastest.

5.3.5.4 Results on CMU

Figures C.10 and C.11 illustrate the results under soft constraints (CT = 300 seconds).
As seen in Figures C.10(a) and C.10(b), D-DF and PDFS were the most precise algorithms
in terms of deviation and matching dissimilarity. However, D-DF was more accurate since
its matching dissimilarity was 0.5% while the one of PDFS was 1.13%. The third precise
algorithm was ADF since its deviation was 2.8% and its matching dissimilarity was 5%.
The number of best found solutions of D-DF was the biggest (i.e. 98%), see Figure C.10(c),
followed by PDFS whose number of best solutions was 95%.

PDFS was also able to find 20.30% of optimal solutions when compared to ADF and
A∗ which were able to find 18.33% of optimal solutions. D-DF, however, beat PDFS
since its average number of optimal solutions was 22.57%. Although D-DF explored much
more nodes in the search space, the average time-out was 77.42% while it was 81.66% in
both ADF and A∗ and 79.0% in PDFS. This fact highlights the importance of parallel
and distributed algorithms. Figure C.11(d) summarizes the previous results. On the
approximate methods side, BS-1 was the best one with a deviation that equals 7% while
BP and FBP were the worst ones with a deviation that equals 27%.

Conclusion By looking at all the previous results, we can see that in general D-DF beat
PDFS. This is theoretically true since D-DF is a scalable algorithm and thus its processes
are totally independent. On the other hand, threads in PDFS share resources which can
slow them down. However, practically, on Protein, PDFS was performing better than D-
DF. In fact, since both algorithms are run on different architectures, the number of workers
is different (i.e., 128 threads in PDFS sharing the same resources versus 20 processes in
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D-DF with independent resources). Such a fact cannot make the comparison in this part
possible.

5.3.5.5 Focusing on Difficult Graph Edit Distance Instances

As seen in the previous sections, unlike PDFS, the run time of D-DF is sometimes
bigger than ADF. This is due to the fact that D-DF ultimately needs some pre-processing
time before starting the exploration of the search tree in a distributed fashion, see Section
5.3.4.2. Thus, one can conclude that D-DF is worthwhile when having more difficult
problems. For example matching Gi with Gi is an easy instance that does not need to
be distributed. Based on that, in this section, we eliminate the easy GM instances from
GREC, MUTA, Protein and CMU datasets. To filter these databases, we run ADF on
each pair of graphs and stop it after 300 seconds. If an optimal solution could not be
found within 300 seconds, then the GM problem is considered as difficult.

Table 5.9 depicts the number of difficult problems per subset on each of the aforemen-
tioned databases.

GREC5 GREC10 GREC15 GREC20 GREC-mix

0 0 28 58 6

MUTA10 MUTA20 MUTA30 MUTA40 MUTA50 MUTA60 MUTA70 MUTA-mix

0 90 90 90 90 90 90 90

Protein20 Protein30 Protein40 Protein-mix

84 90 90 90

CMU

549

Table 5.9: Number of difficult problems on each dataset

Figure 5.7 shows the run time of each of the methods under time constraints. D-DF
was always faster or equal to ADF (in average it was faster with a percentage that equals
to 6% on GREC, 3% both MUTA and CMU, and 1% on CMU. At a first glance, one
can think that A∗ was faster than both ADF and D-DF. However, because of its memory
bottleneck, as seen in the previous sections, it was unable to output feasible solutions. BP
was the fastest algorithm where its run time in average was 12.3 ms on GREC, 11 ms on
MUTA).

5.3.6 Testing the Proposed Methods under Hard Time Constraints

In these tests, the ground truth of GDR4GED is used for the two metrics (deviation
and matching dissimilarity), see Section 5.2.6.1.

Under hard time constraints, A∗ did not have time to output feasible solutions and
thus it got the highest average deviation rates (around 35% on GREC, 80% on MUTA,
80% on Protein and 81% on CMU), see Figure D.1. JHBLP was also unable to output
feasible solutions on each of MUTA-30, MUTA-40, MUTA-50, MUTA-60, MUTA-70 and
MUTA-MIX where its solutions and it had a deviation that was equal to 100%. This is
due to the setup time taken by mathematical solver to solve the continuous relaxation of
the GED problem in polynomial time O(n3.5) with the interior point method [30]. Despite
the fact that PDFS was among the slowest algorithms, it obtained the least deviation
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Figure 5.7: Difficult problems: Run time (CT = 300 seconds)

(1.75% on GREC, 2.27% Protein, 13% CMU and 18% on MUTA), see Figure D.1. BS-100
outputted unfeasible solutions on MUTA-50, MUTA-60, MUTA-70, MUTA-MIX, Protein
and CMU due to the hard CT . BP got relatively small average deviation on GREC,
Protein and CMU (4.01% on GREC, 2.44% on Protein and 25.56% on CMU), see Figure
D.1. However, it had quite high dissimilarity matching, see Figure D.2.

In order to better understand the behavior of ADF, PDFS and BP, Table 5.10 summa-
rizes their average best found solutions, deviation and matching dissimilarity on GREC,
MUTA, Protein and CMU. One can see that, for instance, the deviation gap between BP
and PDFS was 2.26% on GREC, 22.37% on MUTA, 0.17% on Protein and 12.56% on
CMU. While the deviation gap is relatively small, the matching dissimilarity gap is bigger
(8.9% on GREC, 46.58% on MUTA, 7.75% on Protein and 18.37% on CMU). Such a fact
reveals that the error made by matching is always higher than the error made by distance.
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Avg # Best
Found Solutions

Avg Deviation Avg Matching Dissimilarity

BP DF PDFS BP DF PDFS BP DF PDFS

GREC 42.8% 84.6% 95.6% 4.016% 2.23% 1.75% 26.5% 18.51% 17.6%

MUTA 15.5% 61.8% 76.12% 40.37% 19.75% 18% 68.7% 32.855% 22.125%

Protein 86% 90% 95.8% 2.44% 2.34% 2.27% 28.5% 25.43% 20.75%

CMU 90.75% 97.20% 99.39% 25.56 % 15.37% 13.0% 37.0454% 20.252% 15.67%

Table 5.10: Speed Test: The average number of best found solutions, deviation and match-
ing dissimilarity of GREC, MUTA, Protein and CMU

One can also see that, on Protein and GREC, BP got high number of best found solutions,
small deviation and small matching dissimilarity. In fact, in such a hard time constraint,
ADF and so PDFS were not always able to improve the upper bound found by BP. More-
over, in the case of Protein, that could be because of the time the Protein’s cost function
takes to calculate vertex-to-vertex distances preventing ADF and PDFS from improving
UB when time matters, see Section 5.2.2.3.

5.3.7 Anytime Tests

5.3.7.1 Environment

The evaluations of anytime tests are conducted on a 8-core Intel R(Xeon) CPU 2.66GHz
and 8GB memory. A memory constraint was set to 1GB. The time constraint is varied
from 5 milliseconds (ms) to 500 ms on all databases.

5.3.7.2 Databases

In the experiments, three databases have been included (Protein-40, MUTA-70, GREC-
20 and CMU). The reason for having chosen these subsets is because they are the biggest
ones in the GDR4GED repository.

5.3.7.3 Methods

Table 1 summarizes the methods included in the experiments. In all the aforementioned
methods, memory consumption is not exhausted. As it was previously mentioned, the
memory complexity of the anytime ADF and DF-UB algorithms is relatively small thanks
to the depth-first search where the number of pending nodes is |V1|.|V2| in the worst case.
A∗ could have been also added to the experiments, however, its memory complexity is
exponential and so it will not be able to keep exploring the search tree and thus outputting
feasible (i.e., complete) solutions before timeout. The algorithm of [71], described in
Section 2.3.1.1, was implemented and solved using CPLEX-12 mathematical solver. This
method was also unable to output feasible solutions in 500 ms or less. In fact, this is due
to the complexity of continuous relaxation of JHBLP is O(3n7) where n is the number of
vertices of the included graphs.

In both BP and FBP, λdegi is used as a node centrality when matching vertices.
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Acronym Reference Details

ADF-UB This thesis AnyTime GED with an
initial UB equals to BP,
h(p)=0.

ADF This thesis AnyTime GED without an
initial UB, h(p)=0.

BS-1 and BS-100 [98] Beam Search with OPEN
size = 1 and 100 respec-
tively

BP [106] The bipartite GM

FBP [121] The fast version of BP

Table 5.11: Methods included in the experiments

5.3.7.4 Results and Discussions

Figure 5.8 depicts the list of improved solutions (i.e., distances) found by the anytime
methods ADF-UB and ADF on three random pairs of graphs that are taken from GREC-
20, MUTA-70 and Protein-40. One can observe that in the first few milliseconds ADF-UB
does not output any solution while ADF succeeds in outputting several solutions, however,
with the delight of time both of them reach the same distance. Such a fact reveals the
importance of anytime algorithms, since they are able to improve their solutions in a few
milliseconds.

Figure 5.9 illustrates the deviation on Protein-40 when varying the available time up
to 40 ms (see Figure 5.9(a)) and 500 ms (see Figure 5.9(b)). One can observe that ADF
was the fastest method as it outputs solutions just after few milliseconds, followed by BS1
and BS100. Both FBP and BP solve the linear assignment problem with the help of the
Hungarian methods. This fact cannot let them output solutions rapidly for relatively large
graphs when time matters. Since ADF-UB computes BP as a UB so its first solution is
highly dependent on BP. When we add more time (as illustrated in Figure 5.9(a)), BP
and FBP output satisfied deviations. Unlike the latter methods, ADF-UB is an anytime
algorithm and so it keeps improving its solutions until we suspend the algorithm.

Figure 5.10 points out the results on CMU. The same remarks as Protein can be
seen, however, the deviation of BP and FBP have a low quality even when increasing
time constraint (see Figure 5.10(b)). On the other hand, ADF-UB succeeds at improving
the deviation when increasing the time constraint. On both Protein and CMU, BS100 ’s
deviation is approximately equal to 100%, this is because it did not find feasible solutions
before timeout.

As for MUTA-70, Figure 5.11(a) shows that when time matters, FBP was surprisingly
faster in outputting solutions, followed by BP and then ADF-UB. We have argued that:
First, MUTA has less dense graphs than Protein’s and CMU’s graphs where the average
|V |/|E| ratio is 30.3/30.8 on MUTA, 32.6/62.1 on Protein and 30/79 on CMU, such that
|V | and |E| are the total numbers of vertices and edges, respectively. Second, the edges of
MUTA are unattributed, unlike Protein where type and length are provided on attributes.
Third, the cost functions of MUTA consumes less time when compared to the ones of
Protein. For all these reasons, solving the edges assignment problem on MUTA is faster
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Figure 5.8: Random pairs of graphs taken from different graph databases illustrating the
improvement of found solutions with the delight of time
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Figure 5.9: Anytime test: Deviation on Protein: Left (up to 40 ms), Right (up to 500 ms)

than Protein and CMU. Thus, FBP and BP were able to output their solutions faster
than ADF. Since FBP has a reduced complexity when compared to BP, it always performs
faster. After 27 ms, ADF outperformed BP and so ADF-UB. However, after 70 ms, ADF-
UB beat it. Since both algorithms are anytime ones, they keep improving their solutions
found so far while the other algorithms remain stable, except BS100 since additional time
is beneficial for it.

Figure 5.12 shows the effect of lb2, mentioned in Table 5.7, on the performance of ADF,
ADF-UB, BS1 and BS100. Results demonstrated that after 4000 ms, BS100-LB, ADF-
LB and ADF-UB-LB had the smallest deviation. Among these algorithms, ADF-UB-LB
was the most accurate. One can conclude that with more time, the existence of h(p) is
important since it helps in pruning tree branches. In all the experiments, the behavior of
BS100 looks similar to A∗ which was also unable to output feasible solutions.

The results of GREC are illustrated in Figure 5.13. Similar to MUTA, the |V |/|E|
ratio of GREC is 11.5/12.2 and so as MUTA the edge assignment problem is easier than
the one of Protein. Thus, as on Protein, FBP, BP and so ADF-UB are faster than ADF.

For a better understanding of the performance of anytime GEDs, Table 2 directs
attention on the average setup time. We study the average setup time on two databases
on which anytime algorithms behaved differently. On Protein, ADF has proven to be
faster than the approximate algorithms. In average, ADF only needed 12.88 ms to output
a solution. However, this was not the case on MUTA where FBP was the fastest with
only 15.60 ms in average.

As seen in the previous experiments, the GED anytime algorithms sometimes outper-
formed the approximate GED algorithms (such as BP and FBP). This conclusion brings
into question the usual evidences saying that it is impossible to use exact methods of GM
in real world applications when matching large graphs.
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Figure 5.10: Anytime test: Deviation on CMU: Left (up to 100 ms), Right (up to 500 ms)

Protein
FBP BP BS1 ADF ADF-UB

Setup Time (ms) 47.60 49.81 12.10 12.88 50.02

Deviation at Setup Time 4.344 1.789 31.597 31.490 1.789

MUTA

Setup Time (ms) 15.60 17.55 3152.56 24.70 18.35

Deviation at Setup Time 37.874 42.254 4.169 44.169 42.254

Table 5.12: The average setup time and deviation on Protein and MUTA

5.3.8 Graph Density Tests

In the previous section, we have argued that FBP and BP are faster when graphs
are less dense while ADF is faster when graphs are more dense. In order to prove that,
a graph database dedicated to graph density is generated. To have different densities,
random graphs are created using the Erdos-Renyi model [44]. Figure 5.14 illustrates an
example of an Erdos-Renyi graph 3.

Every possible edge is created with the same constant probability. These densities
represent the probability of drawing an edge between two arbitrary vertices. For instance,
0.1 indicates that the probability of having an edge between two vertices is 0.1 and so on.

This part of experiments is divided into two parts:

• Density Scalability: For the same number of vertices, different densities are generated
aiming at studying the behavior of GED methods when increasing density. Thus,
we generate one database that consists of four subsets (0.1, 0.2, 0.4 and 0.6), each
of which has 100 graphs whose size is 100 vertices. These subsets represent four
different densities

• Vertex Scalability: The purpose of such a test is to see how GED methods behave

3taken from http://www.ece.umn.edu/ ∼mihailo/software/graphsp/performance.html
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Figure 5.11: Anytime test: Deviation on MUTA: Left (up to 40 ms), Right (up to 500 ms)

when having low dense graphs (e.g., 0.1) and high dense graphs (e.g., 0.4) while
increasing the number of vertices from 100 to 1000. To this end, 4 databases are
generated each of which concerns a specific number of vertices (100-vertices, 200-
vertices up to 1000 vertices). For each database, we generate two subsets of 100
graphs each of which has 0.1 and 0.4 as graph density, receptively.

In both density and vertex scalability tests, we are interested in the setup time of
FBP, BP and ADF. Thus, for ADF, we stop the algorithm after a first complete solution
is generated; this solution is compared to the answers provided by both FBP and BP.
Since the graphs in this section are large (i.e., up to 1000 vertices), the preprocessing step
of ADF and the first upper bound calculated by BP are not integrated, see Section 3.3.2.
CT is set to 300 seconds and CM to 5GB due to the complexity of the problems.

5.3.8.1 Results of Density Scalability Test

Figures 5.15(a) and 5.15(b) represent the results of deviation and run time, respectively.
Results showed that when the density of graphs increases the deviation of BP and FBP
decreases and their run time increases. For instance, on the 0.1 subset, the deviations
of FBP, BP and ADF were 0.93%, 1.72%, 2.186%, respectively. However, when the
density increased, ADF had proven to be the most effective algorithm with a deviation
that was equal to 1.34%, while the deviation of each of FPB and BP was 17.03%, 51.97%,
receptively. These results prove that the most complex the graphs the less precise the
results obtained by approximate GED algorithms. This is also the case of the run time.
For instance, on the 0.1 density subset, both FBP and BP were twice as fast as ADF while
ADF was twice as fast as FBP and BP on denser graphs (i.e., graphs whose density is
0.6). One can also notice that when density increased, the run times of all these algorithms
increased because of the difficulty of the matching problems.
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Figure 5.12: Anytime test: Deviation on MUTA: (up to 6000 ms)

5.3.8.2 Results of Vertex Scalability Test

Figure 5.16 depicts the results of vertex scalability when density is equal to 0.1. Figure
5.16(a) shows that the first solution found by ADF is very close to the solutions of FBP
and BP. For example, in the case of 100 vertices, the deviations of FBP, BP and D-DF
were 4.53%, 5.31%, 0.031%, respectively. However, when number of vertices is equal to
500, the deviation of ADF was beaten by FBP and BP with a very low percentage (i.e.,
0.47%). On the run time side, ADF was tremendously faster in outputting a first solution.
FBP was faster than BP, for instance, on 500 vertices, the average run time of FBP, BP
and ADF was 273877 ms, 10833 ms, respectively. However, the run time of FBP and
BP exceeded CT when graphs are larger than 500 vertices. Thus, these methods were
not tested on graphs whose sizes are larger than 500 vertices, see Figure 5.16(c). We can
observe that the complexity of the problem increased approximately twice when increasing
the number of vertices. For instance, the run time of ADF on 900 vertices was 174580 ms
while it was 233924 ms on 1000 vertices. As a conclusion from Figure 5.16 , ADF proved
to be the algorithm whose run time is remarkably low when compared to FBP and BP.

Regarding the results of vertex scalability test when the density is equal to 0.4%, one
can observe that the deviation of FBP and BP became bigger due to the increase of the
density, see Figure 5.17(a). ADF was the most precise algorithm with a deviation that is
equal to 1.5% and 0.5% on 100 vertices and 200 vertices, respectively. BP was the least
precise algorithm with a deviation that was equal to 16.5% and 33.6% on 100 vertices
and 200 vertices, respectively. Regarding the run time results, one can see a tremendous
growth in run time of FBP and BP when increasing the number of vertices from 100 to
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Figure 5.13: Anytime test: Deviation on GREC

Figure 5.14: An example of an Erdos-Renyi graph

200 vertices. On 200 vertices, the average run time of FBP and BP is 377757 ms and
377979.49 ms, respectively. That is, both of them exceeded CT on only 200 vertices while
ADF took only 4926.04ms on 200 vertices, see Figure 5.17(b).ADF, however, continued to
match graphs up to 500 vertices with a run time that was equal to 269979 ms, see Figure
5.17(c). After 500 vertices, it exceeded CT .

Conclusion In the previous experiments, ADF was executed and stopped after a first
complete solution is generated. ADF, however, had remarkably low deviations and run
times when compared to FBP and BP. Despite the enough time FBP and BP had, they
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Figure 5.15: Graph Erdos-Renyi’s density test: Deviation and run time

were not able to output solutions that are as precise as the ones found by ADF (except on
non-complex graphs). Thus from the density and vertex scalability tests, one can conclude
that:

• Approximate methods like FBP and BP are not precise at all when graphs are dense.

• Approximate methods can output fruitful solutions only when attributes help in
guiding the matching process.

5.4 Classification under Time and Memory Constraints

In the previous chapters, graph-level evaluations of methods were performed. In other
words, methods are evaluated based on their distances and matching dissimilarities. In
this chapter, a classification-level evaluation is performed. Methods are compared based
on their classification rate. This test is considered as a use case of the test described in
Section 5.3.4.2 where many distances have to be quickly computed.

5.4.1 Included Methods

Table 5.13 shows the methods included in the classification experiments. Different
versions of ADF as well as A∗ are integrated and tested. We recall that D-DF cannot be
included in a classification context because of its implementation’ constraints, see Section
5.3.4.2.

5.4.2 Environment and Constraints

The evaluation of all algorithms are conducted on a 24-core Intel i5 processor 2.10GHz,
16GB memory. The methods are evaluated under time and memory constraints. As in the
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Figure 5.16: Vertex scalability test (Erdos-Renyi density = 0.1): Deviation and run time

speed test, we have chosen the time limits used for each of GREC, MUTA and Protein,
as depicted in Table 5.8. Regarding CM , it was set to 1GB during the whole experiment.

5.4.3 Included Datasets

In order to test the classification rate, one need to choose some graphs’ databases
dedicated to classification. For that purpose, the IAM database [105] is selected. Since
we are interested in classification, we will take the whole dataset without dividing it into
subsets as what have been previously done. In this section, we provide some information
about the learning dataset of each of GREC, MUTA and Protein.
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Figure 5.17: Vertex scalability test (Erdos-Renyi density = 0.4): Deviation and run time

5.4.3.1 GREC

This data set consists of 1,100 graphs where graphs are uniformly distributed between
22 symbols. The resulting data set is split into a training and a validation set of size 286
each, and a test set of size 528.

5.4.3.2 Mutagenicity

4,337 elements are represented in this data set (2,401 mutagen elements and 1,936
non-mutagen elements) which are divided into: a training set of size 1,500, a validation
set of size 500, and a test set of size 2,337.
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Acronym Details

ADF -UB-LB ADF without upper bound
and with h(p)=0.

ADF -UB-LB ADF without UB and
with h(p)=lb2.

ADF -UB-LB ADF with an initial UB
equals to BP, h(p)=0.

DF-UB-LB ADF with an initial UB
equals to BP and lb2

PDFS-UB-LB PDFS with an initial UB
equals to BP and lb2

A∗-LB the A∗ algorithm with lb2

A∗ the A∗ algorithm without
lb2

BS-1, BS-10 and BS-100 Beam Search with OPEN
size = 1, 10 and 100, re-
spectively

BP The bipartite GM

FBP The fast version of BP

H The hausdorff algorithm.

Table 5.13: Methods included in the classification experiments

5.4.3.3 Protein

600 Proteins are uniformly distributed over 100 classes. The resulting data set is split
into a training, a validation and a test set of size 200 each.

5.4.4 Protocol

In this experiment, 1-NN classifier is used to assess the quality of the resulting edit
distances because it directly uses the edit distances without any additional classifier train-
ing.

Algorithm 18 The 1NN−classifier of each graph Gx in the test set

Input: The set S of labeled graphs (i.e., train set): {(G1, C1), · · · , (Gn, Cn)} and the
unknown graph Gx Output: the class label assigned to Gx

1: dmin =∞
2: j = 0
3: for i = 0 to n do
4: dix=GraphEditDistance(Gx,Gi)
5: if dix < dmin then
6: i = j
7: dmin = dix
8: end if
9: end for

10: Cx = Cj
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Algorithm 18 shows the pseudo code of the 1NN-classifier of each graph Gx in the
test set. The classification of each test graph is performed by evaluating its edit distance
from every graph in the training set and assigning it the class of the closest training graph
(lines 3 to 8). Note that under time and memory constraints, BS and A∗ sometimes
output unfeasible distances (i.e., ∞) because they are not able to find a feasible solution
before halting. 1GB has been set as a memory constraint for all algorithms. This memory
constraint always concerns A∗.

Three metrics are selected: classification rate, response time, number of unfeasible
solutions and number of optimal solutions. The average of each of the aforementioned
metrics is calculated by dividing it by the number of test graphs.

5.4.5 Results and Discussion

Table 5.14 depicts the results on GREC and Protein. BP ADF and PDFS are the
methods whose classification rates are the best on GREC and Protein.

On GREC, ADF with all its variants obtained the same classification rate as BP (i.e.,
0.985) even the one without upper and lower bounds (i.e., ADF -UB-LB). That shows
that ADF can also be used to classify graphs even without being obliged to wait for the
final, or optimal, solution. DF-UB-LB was the fastest compared to all the variants and
the one whose number of optimal solutions is the biggest. This fact shows the importance
of UB and LB to make the algorithm faster. Accordingly, and since PDFS is an extension
of ADF, not all the variants of PDFS are tested. That is, only PDFS-UB-LB has been
included in the tests. PDFS-UB-LB was 29% faster than DF-UB-LB. Despite the fact
that H was the worst algorithm when evaluating its distances as well as the matching
dissimilarity, it was among the algorithms whose classification rate were high. One can see
that, on GREC, H beat both BS-10 and BS-100. A∗-LB obtained better classification
rate than A∗, that is because the number of unfeasible solutions found by A∗ is higher.

On Protein, one can see a different behavior, where DF-UB -LB was the fastest while
DF-UB-LB was the slowest. That is because of the time consumed to calculate distances
using the cost functions of Protein. Thus, as in GREC, PDFS-UB-LB was included in
the tests. Despite the slowness of DF-UB-LB, it was also the best algorithm in terms
of classification rate and the average number of optimal solutions. PDFS-UB-LB was
36% faster than DF-UB-LB and was able to find more optimal solutions. Even though BS
took relatively enough time to classify graphs (compared to ADF ), it was way far from the
results obtained by ADF. A∗ was not able to find feasible solutions of each pair of graphs.
That was not the case of all the variants of ADF as they were always able to output
feasible solutions before halting. Despite the fact that FBP was the fastest algorithm, it
was unable to find the best classification rate. One can see that ADF -UB-LB obtained a
better classification rate than the one found by FBP.

On MUTA and since CT is set to 500ms, we kept only ADF -UB-LB and A∗-LB since
computing LB and UB are costly on such a database. Results showed that ADF -UB-LB
was twice as slow as BP, however, both of them succeeded in finding the best classification
rate (i.e., approximately 0.7). PDFS -UB-LB was also able to find the same classification
rate and was 40% faster than ADF -UB-LB.
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GREC

Methods Classification Rate Response Time (ms) # Unfeasible Solutions # Optimal Solutions

ADF -UB-LB 0.985 171401.54 0.0 0.139

ADF -UB-LB 0.985 163979.45 0.0 0.141

ADF -UB-LB 0.985 140675.0 0.0 0.468

DF-UB-LB 0.985 140525.48 0.0 0.469

PDFS-UB-LB 0.985 99850.79 0.0 0.678

A∗-LB 0.890 358158.76 0.218 0.065

A∗ 0.530 222045.94 0.443 0.439

BS1 0.985 69236.34 0.0 0.0

BS10 0.943 83928.21 0.009 0.0

BS100 0.587 83928.20 0.287 0.0

BP 0.985 62294.60 0.0 0.0

FBP 0.985 27922.65 0.0 0.0

H 0.9621 63563.74 1.0 0.0

Protein

ADF -UB-LB 0.445 128469.57 0.0 0.00755

ADF -UB-LB 0.52 124361.61 0.0 0.00765

ADF -UB-LB 0.40 147371.86 0.0 0.00738

DF-UB-LB 0.52 145779.68 0 0.007875

PDFS-UB-LB 0.52 80038.33 0.0 0.00855

A∗-LB 0.29 1065106.80 0.011 0.00595

A∗ 0.265 194021.88 0.005 0.0045

BS1 0.24 129571.76 0.244 0.0

BS10 0.26 139294.88 0.035 0.0

BS100 0.26 141265.41 0.007 0.0

BP 0.52 59041.84 0.0 0.0

FBP 0.385 39425.69 0.0 0.0

H 0.43 71990.62 1 0.0

Mutagenicity

ADF -UB-LB 0.70089 1139134.29 0.0 0.001411

PDFS-UB-LB 0.70089 760861.518 0.0 0.04856

A∗-LB 0.4574 856793.020 0.4 0.00001

BS1 0.55840 1015688.00 0.37155 0.0

BS10 0.55540 1256793.020 0.5067 0.0

BS100 0.55540 1383838.66 0.7238 0.0

BP 0.700042 528546.64 0.0 0.0

FBP 0.700042 376135.51 0.2 0.0

H 0.58964 525610.25 1.0 0

Table 5.14: Classification results on GREC, Protein and MUTA. The best results on the
side of exact and approximate GED methods are marked in bold style
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Chapter 6

Conclusion and Future Works

In literature and in life we ultimately pursue, not conclusions, but beginnings. Sam

Tanenhaus
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Abstract

In this very final chapter, we recall the main contributions of the thesis and review the
advantages and drawbacks of the proposed works as well as their possible extensions.

6.1 Conclusion

This thesis lies in the scope of graph-based pattern recognition methods. We focused on
the optimization of GM techniques in order to make them usable on real-world PR appli-
cations. That is, the proposed methods should be able to process highly attributed graphs
in a reasonable time on a reasonable machine (i.e., under time and memory constraints).

Roughly speaking, in the literature there are two categories of GM known as exact GM
and error-tolerant GM. The algorithms dedicated to solving exact GM have to answer
the question of whether or not two graphs, or subgraphs of them, are identical. Thus,
the graphs to be matched have to be strictly correspondent or partially correspondent in
terms of structure as well as attributes. Exact GM methods fail to match real-world graphs
that are noisy and deformed due to graph extraction process. For these reasons, error-
tolerant GM emerged as a powerful and flexible GM problem where any kind of graphs
can be included in the matching process. By using error-tolerant techniques, one can
match graphs, whether identical or not, and a similarity measure as well as the matching
sequence can be obtained after the matching process. Thus, exact GM can be seen as
a special case of error-tolerant GM. The similarity measure of error-tolerant GM can be
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obtained through objective functions that aim at increasing the similarity between two
graphs. For an algorithm dedicated to error-tolerant GM to obtain the exact matching
sequence, huge resources are needed specially when working on large graphs. To this
end, researchers tend to optimize their proposed approaches in order to be able to match
relatively large graphs.

Graph edit distance (GED) has received attention as an important way to measure
the similarity between pairwise graphs error-tolerantly. The basic idea of GED is to find
the best set of transformations that can transform graph G1 into graph G2 by means of
edit operations on graph G1. Each path that transforms G1 into G2 is called an edit
path. A partial edit path is an edit path that partially transforms one graph into another.
Classically, the allowed operations are inserting, deleting and/or substituting vertices and
their corresponding edges.

In the literature, error-tolerant GM methods have often been evaluated in a classifica-
tion context and less deeply assessed in terms of the accuracy of the found solution. To
evaluate the accuracy of error-tolerant GM methods, graph-level information is required at
matching level (i.e., matching quality and similarity deviation) and not only at class level.
Most of the publicly available repositories with associated ground truths are dedicated to
evaluating graph classification or exact GM methods and so the matching correspondences
as well as the distance between each pair of graphs is not directly evaluated. As a first con-
tribution in the thesis, a performance evaluation tool for GED methods is proposed. This
contribution consists of two parts: First, a graph database repository, called GDR4GED,
annotated with graph-level information like graph edit distances and their matching cor-
respondences has been made publicly available for some representative graph databases.
The proposed new metrics allow to evaluate and characterize GED methods by evaluating
the matching correspondences as well as the distance between each pair of graphs. Be-
cause of the high complexity of GED methods, we proposed to evaluate them under time
and memory constraints. The aim of this contribution is to make GED methods better
comparable against each other and to provide information about their applicability on
real-world problems. For that reason, we highly encourage the community not only to use
the information provided in GDR4GED, but also to integrate their algorithms’ answers
when obtaining more accurate results.

The next contribution of this thesis falls in the GM families. As stated before, two
main families have been found in the literature: exact and error-tolerant GM. In this
thesis, we proposed adding a new GM family, called anytime GM. In order to demonstrate
the benefit of having such a family, a new optimized algorithm which is based on depth-
first search is put forward. This algorithm speeds up the computations of graph edit
distance thanks to its upper and lower bounds pruning strategy and its preprocessing
step. Moreover, this algorithm does not exhaust memory as the number of pending edit
paths that are stored in the set OPEN is relatively small thanks to the depth-first search
where the number of pending nodes is |V 1|.|V 2| in the worst case where |V1| and |V2| are
the numbers of vertices in G1 and G2, respectively. Accordingly, DF outperformed A∗ in
terms of speed, precision and classification rates, as it was illustrated in the thesis. DF is
able to provide not only one solution but successive solutions for better and better quality
according to available resources. The anytime version of DF, denoted by ADF, is able
to find an initial, possibly suboptimal, solution quickly, keep it in the memory and then
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continue searching for improved solutions until convergence to a provably optimal solution.
The simplicity of the approach makes it very easy to use, it is also widely applicable. It
can be used not only when optimal solution is desired, but also when we want to see
the evolution of the quality of the suboptimal solutions found at each time t. One can
remarkably notice the interests of anytime GM methods compared to approximate methods
as demonstrated in the experiments under time constraints. Generally speaking, Anytime
GM provides an attractive approach to challenging GM problems, especially when the
time and memory available to compare graphs are limited or uncertain and when we are
interested in improving the best solution found so far.

To go one step further, to be able to match larger graphs with better quality, we
also propose parallel GED algorithms. Always starting from DF, we speed up its com-
putations by proposing a multithreaded implementation with an efficient load balancing
strategy. This algorithm is called PDFS. In PDFS, each thread gets one or more partial
edit paths and all threads solve their assigned edit paths in a fully parallel manner. A work
stealing process is performed whenever a thread finishes all its assigned threads. More-
over, synchronization is applied in order to ensure upper bound coherence. PDFS has a
bottleneck since that it cannot be run on several machines. To cope with this problem, a
distributed version can be of great interest so as to scale up and to match larger graphs.

As a distributed version of DF, we have proposed another exact GED algorithm, re-
ferred to as D-DF, which is a distributed GED that is also based on DF . D-DF is
implemented on the top of Hadoop with a message passing tool. The reason for having
chosen Hadoop is to take advantage of its fault tolerance. D-DF first starts with a prepro-
cessing step and the distribution of partial edit paths among workers. Each worker gets
one partial edit path and all workers solve their assigned edit paths in a fully distributed
manner. In addition, a notification process is integrated. When any worker finds a better
upper bound, it notifies the master to share the new upper bound with all workers.

The main drawback behind D-DF is that it has a single job. When there is no CT ,
some workers may work while others become idle after finishing the exploration of their
assigned partial edit paths. To overcome this drawback and as future work, we aim at
including the load balancing into the process of D-DF where all workers work without
becoming idle. Moreover, two ideas can be applied for both DF and D-DF. First, coming
up with a better lower bound and thus making the calculations faster. Second, learning to
sort the vertices of each dataset in a way that minimizes its deviation. Such an extension
of DF and D-DF can beat the approximate approaches when matching symbolic graphs.

To evaluate ADF, PDFS and D-DF, we have proposed evaluating both exact and
approximate GED approaches, using the metrics proposed in GDR4GED under soft and
hard time constraints. Soft constraints are devoted to accuracy tests while hard constraints
are devoted to speed tests, respectively. One could ask a question: ”how many milliseconds
do we need as soft time constraints?”. To answer this question, we measured the time
needed by the approximate methods (i.e., the bipartite matching method BP [106] and the
hausdorff-based method H [49]) to output solutions for each pair of graph. The maximum
time needed by BP and H to output a solution on the selected databases was: 500 ms
on MUTA and 400 ms on GREC, Protein and CMU. As for the soft time constraint, 300
seconds was fixed for all the selected subsets. This amount of time can ensure that the
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tree-based approximate GED algorithms as well as the exact algorithms output solutions
can be compared to the algorithms whose complexities are less (such as BP and H ).

PDFS was compared to other methods under both hard and soft time constraints.
However, that was not the case of D-DF. Because of distribution aspects, D-DF was not
evaluated under a hard time constraint. Hence, DF had replaced it for such a test as it
represented the sequential version of D-DF. All the algorithms evaluated under the soft
time constraint without any exception. In the case of evaluating the methods under hard
constraints, the lower bound was removed from PDFS because it was time consuming.

Results showed that under soft time constraints PDFS and D-DF had the minimum
deviation and matching dissimilarity and the maximum number of best found solutions.
Both of them explored more nodes than ADF in parallel and distributed fashions and
thus helped in speeding up the exploration of the search tree. Since our goal was to
elaborate methods dealing with rich and complex attributed graphs, BS was slightly su-
perior to PDFS and D-DF in terms of best found solutions and matching dissimilarity
when evaluated on the MUTA dataset. Experiments has also demonstrated that PDFS
always outperformed ADF in terms of speed, however, that was not the case of D-DF
because of distribution aspects. D-DF, however, was faster than ADF when matching
difficult problems. Results has also indicated that there is always a trade-off between
deviation and running time. In other words, approximate methods are fast, however, they
are not as accurate as exact methods. On the other hand, ADF, PDFS and D-DF took
longer time but led to better results (except on MUTA). By limiting the run-time, our
exact method provides (sub)optimal solutions and becomes an efficient upper bound GED
approximation.

By taking a look at the results of the experiments, it is hard to tell whether PDFS or D-
DF is better for solving GM problems. PDFS has been tested on a 24-core machine while
D-DF was tested on 5-machines, each of which is a 4-core machine and thus these methods
cannot be compared due to the differences in their approaches and mainly machines’
characteristics.

As for the tests under hard time constraints, PDFS was among the slowest algorithms,
however, it was always the most precise one. While BP was the most precise approxi-
mate GED method, its matching was high when compared to ADF and PDFS. Such a
fact reveals the necessity of not only evaluating the distances outputted by approximate
algorithm but also their matching correspondences.

One could ask a question: ”When to use PDFS and when to use D-DF?”. As it was
stated before, PDFS is limited by the number of cores the machine has. D-DF is more
scalable as one can add more machines and thus have more precise solutions in terms of
distance and matching. This is not actually the case of PDFS as we cannot keep increasing
the number of the threads, there will be a moment where the performance of PDFS will
be degraded (as shown in the experiments when changing the number of the threads).

To the best of our knowledge, PDFS and D-DF were the first attempts for reducing
the running time of exact GED using parallel and distributed fashions.

In the experiments of anytime GED, we have focused on both the deviation when
varying the timeout and the minimal time needed by our anytime algorithm to get a
first solution, often suboptimal specially on large graphs, as well as the time needed by
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some suboptimal GM methods on different graph datasets. Results showed that there
is a trade-off between time and quality. Even if the fast bipartite matching FBP [121]
and BP [106] were faster when graphs were sparser; ADF was faster when graphs were
denser. It is remarkable that anytime algorithms are also effective when we accept some
additional time that grantees better solutions to be found. Merging ADF and BP as in
ADF-UB is also beneficial since anytime ADF will improve the solutions found by BP.
On the selected datasets, the experiments showed that (ADF ) ADF-UB have beaten all
approximate methods by just waiting 100 ms per graphs comparison. The proposed any-
time GM methods bring into question the usual evidences that claims that it is impossible
to use exact methods of GM in real-world applications when matching large graphs, or
even in a classification context.

As a last part of the thesis, a classification test under hard time constraints and a
memory constraint is performed. This test is considered as a high-level experiment where
classification accuracy and not distance or matching is evaluated. PDFS, ADF and the
other sequential algorithms are evaluated on GREC, Protein and MUTA. 1-NN classifier
is used to assess the quality of the resulting edit distances because it directly uses the edit
distances without any additional classifier training on these databases. Results showed
that ADF with all its versions and PDFS have proved to be fruitful in a classification
context. Both algorithms along with the cubic algorithm BP had the highest classification
rate. H, when evaluated in a graph-level way was the worst. However, when evaluated in a
high-level manner, it has showed to perform well. Such a result highlights the importance
of evaluating GED methods, or generally error-tolerant GM methods in a graph-level
context.

6.2 Perspectives and Future Challenges

As a future work of GDR4GED, we will further expand this repository by integrating
other publicly available graph databases that have (un)attributed graphs with different
topologies, densities, etc. Both exact and approximate methods will be integrated. More-
over, it will be also interesting to improve the quality of the best found solutions for all
the pairs of graphs on all the datasets.

At the level of DF, it can still be optimized using some ideas:

• Coming up with a better lower bound and thus making the calculations faster.

• Learning to sort the vertices of each pair of graphs in a way that minimizes its
deviation.

Such an extension of DF can beat the approximate approaches when matching graphs
of MUTA and Protein. Since PDFS and D-DF are based on DF, these improvements
would also be added to them.

Since PDFS is limited to one machine, an extended version of it that can scale up from
a single machine algorithm to a multi-machines one is highly effective. Such a version can
be able to scale up and converge faster to the optimal solution. To do that, Message
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Passing Interface can be a suitable distributed computing model since it proved to be
efficient for scalable algorithms that need to share some information between processes.

As for D-DF, its main drawback was due to the fact that it is a single job algorithm.
When there is no CT , some workers may work while others become idle after finishing
the exploration of their assigned partial edit paths. To overcome this drawback and as
future work, D-DF can be transformed into a multi-iteration method where all workers
work without becoming idle.

To the best of our knowledge, ADF is the first attempt of introducing anytime methods
in GM. One big challenge for anytime algorithms is to be able to automatically decide when
to stop the computation because the actual solution is of sufficient quality or will not be
improved significantly even with the delight of more time. Different techniques can be
proposed to take this decision like analyzing the past evolution of solutions. In future
works, more tests will be conducted to understand better the effect of graph’s structures
on approximate and anytime algorithms. Moreover, others heuristic search methods or
anytime version (like CBS [154]) can be adapted to solve the GM problem and could be
compared to the first anytime method proposed in the thesis.

Generally speaking, selecting the most appropriate GED algorithm and so GM algo-
rithm to the own requirements is not a trivial task. To answer this question, one should
study the behavior of the selected algorithms on various graphs that differ in their topol-
ogy, their sizes and the type of attributes on edges as well as vertices (symbolic, numerical,
etc.). All algorithms should be compared on the same databases.

This thesis mainly focused on speeding up exact GED methods and so evaluating them
under memory and time constraints. For all the aforementioned algorithms, and instead
of fixing the time constraints, we can propose a way to automatically interrupt sequential,
parallel, distributed or anytime GED algorithms when the quality of the actual solution
is sufficient for the targeted application or when even with much more time, the quality
of the solution will not increase significantly.
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Figure A.1: The effect of the number of threads on the performance of PDFS when
executed on GREC-20. N was equal to 100
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Figure A.2: The effect of the number of edit paths N on the performance of PDFS when
executed on GREC-20. The number of threads was 64
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Figure B.1: The effect of the number of machines on the performance of D-DF
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Figure B.2: The effect of the number of edit paths on the performance of D-DF when
executed on the GREC dataset

159



Appendix C

Tests under Soft Time Constraints

160



GREC5 GREC10 GREC15 GREC20 GRECMIX

Number of vertices

M
ea

n 
de

vi
at

io
n 

in
 (%

)

0
20

40
60

80

FBP
BP
H
BS−1
BS−10
BS−100
A*
ADF
PDFS
D−DF

(a) Deviation

GREC5 GREC10 GREC15 GREC20 GRECMIX

Number of vertices

m
at

ch
in

g 
di

ss
im

ila
rit

y 
(%

)

0
20

40
60

80
10

0

FBP
BP
BS−1
BS−10
BS−100
A*
DFS
PDFS
D−DF

(b) Matching dissimilarity

GREC5 GREC10 GREC15 GREC20 GRECMIX

Number of vertices

# 
of

 b
es

t s
ol

ut
io

ns
 fo

un
d 

(in
 %

)

0
50

10
0

15
0

20
0

FBP
BP
H
BS−1
BS−10
BS−100
A*
ADF
PDFS
D−DF

(c) Number of Best Found Solutions

GREC5 GREC10 GREC15 GREC20 GRECMIX

  Number of vertices

# 
of

 o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d 

(in
 %

)

0
50

10
0

15
0

20
0

FBP
BP
H
BS−1
BS−10
BS−100
A*
ADF
PDFS
D−DF

(d) Number of optimal solutions

GREC5 GREC10 GREC15 GREC20 GRECMIX

Number of vertices

# 
of

 u
nf

ea
si

bl
e 

so
lu

tio
ns

 fo
un

d 
(in

 %
)

0
50

10
0

15
0

20
0

FBP
BP
H
BS−1
BS−10
BS−100
A*
ADF
PDFS
D−DF

(e) Number of unfeasible solutions

5 10 15 20 mix

Number of vertices

M
ea

n 
# 

of
 e

xp
lo

re
d 

no
de

s

0.
0e

+0
0

2.
0e

+0
6

4.
0e

+0
6

6.
0e

+0
6

8.
0e

+0
6

1.
0e

+0
7

1.
2e

+0
7

BS−1
BS−10
BS−100
A*
ADF
PDFS
D-DF

(f) Number of explored nodes

Figure C.1: Test under soft time constraints: Results on GREC
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Figure C.2: Test under soft time constraints: Results on GREC
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MUTA-70). For this reason, its bar does not appear in the histogram

10 20 30 40 50 60 70 MIX

Number of vertices

m
at

ch
in

g 
di

ss
im

ila
rit

y 
(%

)

0
50

10
0

15
0

FBP
BP
BS−1
BS−10
BS−100
A*
DF
PDFS
D−DF
JHBLP

(b) Matching Dissimilarity

Figure C.3: Test under soft time constraints: Deviation and Matching Dissimilarity on
MUTA
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Figure C.4: Test under soft time constraints: Number of best found solutions and optimal
solutions on MUTA
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it is very small when compared to the other methods

Figure C.5: Test under soft time constraints: Number of unfeasible solutions and explored
nodes on MUTA
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Figure C.6: Test under soft time constraints: Number of time-outs and memory-outs on
MUTA
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Figure C.7: Test under soft time constraints: Run time and Time-Deviation scores on
MUTA
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Figure C.8: Test under soft time constraints: Results on Protein
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Figure C.9: Test under soft time constraints: Results on Protein
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Figure C.10: Test under soft time constraints: Results on CMU
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Figure C.11: Test under soft time constraints: Results on CMU
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Figure D.1: Test under hard time constraints: Deviation
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Figure D.2: Test under hard time constraints: Matching dissimilarity
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Figure D.3: Test under hard time constraints: Number of best found solutions
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Figure D.4: Test under hard time constraints: Time-deviation scores
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